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Abstract

For combinatorial choice problems, I show that the Irrelevance of Rejected Items condition is
equivalent to theWeak Axiom of Revealed Preference (WARP), and is necessary and sufficient for the
existence of a complete, reflexive and antisymmetric rationalization of a combinatorial choice
function. I also show the equivalence of WARP to path independence and to other classical
choice conditions when the choice domain is combinatorial.
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1 Introduction
In combinatorial choice problems (Echenique, 2007), an economic actor chooses out of a set of

available items Y some subset of them C(Y ). A combinatorial choice function C describes the choice of
this actor at every set Y drawn from a universal set X .

Combinatorial choice problems naturally arise in matchingmarkets andmarkets with indivisible
goods. In the matching of workers to firms in a labor market, for instance, each firm hires a team of
workers to fill a set of positions (Kelso and Crawford, 1982; Roth, 1984). The decision of whether
to hire a particular worker in general depends upon which other workers are being hired. Hence,
the firm’s choice to assemble a particular team from a pool of workers is in fact a choice of this
team in favor of every other possible team. In centralized school assignment, an indivisible goods
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allocation problem, over-subscription at a school requires a decision about which students to turn
down. Policy objectives such as diversity imply that this decision depends upon which other students
are available (Sönmez and Switzer, 2013; Echenique and Yenmez, 2015; Kominers and Sönmez,
2016). Since such objectives involve comparisons of groups of students rather than individuals, the
decision of which students to accept from the set of applicants is a combinatorial choice problem.

In this paper, I analyze the rationality properties of combinatorial choice functions. A combi-
natorial choice function is rationalizable if chosen sets are necessarily the best ones amongst all sets
constructible from a given set of available items, as determined by binary relation over sets of items
called the rationalizing preference. The main result (Theorem 1) is a series of novel characteriza-
tions of rationalizable combinatorial choice functions by various conditions on choice.

The investigation of rationality of choice from budget sets of mutually exclusive alternatives has a rich
tradition dating back to the analysis of demand through by way of the Weak Axiom of Revealed
Preference (WARP) (Samuelson, 1938). Say an actor reveals a preference for one alternative over
another if it ever chooses the first when the second is available. WARP is the requirement that in
this case the actor cannot also reveal a preference for second over the first.1 I analyze combinatorial
choice in the spirit of this revealed preference approach.

Combinatorial choice, however, differs from the classical approach by describing choice from
opportunity sets of combinable items. The flexibility to combine items from an opportunity set into a
desired consumption bundle implies that the actual budget set of mutually exclusive alternatives is
the set of all bundles that could be constructed from items in the opportunity set—budget sets are
combinatorially generated from opportunity sets. To illustrate, suppose a firm has a worker pool
Y = {w1, w2}. The firm could choose the team of two ({w1, w2}) or a team of just one worker
({w1} or {w2}). It could also turn them all down, i.e. it could choose the empty set (∅). Then
the budget set is the collection of these four teams as mutually exclusive alternatives. Therefore, to
understand the implication of WARP or any other axiom in the classical approach, I introduce the
following novel representation of a combinatorial choice function C. For each opportunity set Y ,
combinatorially generate the associated budget set and map this budget set to the bundle C(Y ).
This uniquely describes a choice function in the classical sense of selecting an alternative from a set
of mutually exclusive alternatives. I call this classical choice function the faithful representation of C,
and use it to study WARP and other classical choice axioms.

Theorem 1 states the equivalence of a variety of choice conditions with the rationalizability of a
combinatorial choice function. There are two characterizing conditions of note. The first condition
WARP. The second condition is the Irrelevance of Rejected Items (IRI), defined for combinatorial
choice.2 Say an actor rejects an item from an opportunity set if it is not part of the chosen bundle.

1 There are a few variations of WARP (Samuelson, 1938; Arrow, 1959). See Section 2.4 for the formal definition I
use in this paper.

2 Aygün and Sönmez (2013) introduce this condition for the matching with contracts model (Hatfield and Milgrom,
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IRI is the requirement that the actor’s chosen bundle does not change when the opportunity set is
shrunk by the removal of the rejected item. I show that a combinatorial choice function satisfies IRI
if and only if its faithful representation satisfies WARP, and moreover each of these is necessary and
sufficient for the existence of a rationalizing preference. Furthermore, requiring the rationalizing
preference to be complete, reflexive and antisymmetric is without any loss of generality.

One contribution of Theorem 1 is to matching theory. IRI is a crucial requirement for many
important results in choice-based matching (Aygün and Sönmez, 2013). However, it is only defined
for combinatorial choice since it directly references items. On the other hand, WARP is a widely
studied condition definable in any model of choice. Theorem 1 shows that IRI is in fact an in-
carnation of WARP in the combinatorial setting and is exactly the combinatorial choice condition
to ensure rationalizability. Furthermore, I show that a suitable variant of IRI for a combinatorial
choice correspondence is equivalent to WARP for its faithful representation (Proposition 1). These
results provide a rational choice foundation for the use of IRI in matching models.

The domain of a classical choice function is combinatorial if the function is the faithful repre-
sentation of some combinatorial choice function. This class of domains has not been previously
analyzed, to the best of my knowledge. Theorem 1 also contributes to the choice theory literature
by demonstrating the equivalence of some widely studied classical choice axioms to WARP when
the domain of a classical choice function is combinatorial.3 Relations amongst these axioms have
been studied for other domains, notably the various domains with finite budget sets (Sen, 1971;
Bossert et al., 2006).

Finally, note that a preference relation that rationalizes a combinatorial choice function need not
be transitive. A sufficient condition on combinatorial choice functions to obtain transitivity of the
rationalizing preference is substitutability (Proposition 2). This condition states that a chosen item is
still chosen if the opportunity set is shrunk by the removal of one or more other items. Whether there
is a simple combinatorial choice condition that is both necessary and sufficient for the existence of
some transitive and rationalizing relation is an open question.

Related Literature Interpreting items as alternatives and opportunity sets as budget sets yields
another representation of a combinatorial choice function as a classical choice function. Because
the mutual exclusivity requirement is lost, I call it the forgetful representation. Generally, the implica-
tions of a choice axiom for a combinatorial choice function will depend on whether it is imposed
on the faithful or the forgetful representation. The forgetful representation has been used in the
prior matching literature. For instance, Chambers and Yenmez (2017) study combinatorial choice

2005) as the Irrelevance of Rejected Contracts. Versions of this condition appear earlier in the matching literature as
well (Blair, 1988; Alkan, 2002; Fleiner, 2003).

3 The axioms are path independence, the Chernoff property, Arrow’s axiom, and the independence of irrelevant
alternatives.
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functions using the forgetful representation implicitly. They note that the combination of IRI and
substitutability is equivalent to path independence4 of the forgetful representation. They use this
observation together with a result on path independent choice (Aizerman and Malishevski, 1981)
to provide a novel analysis of many-to-many matching problems. In contrast, I show that path in-
dependence of the faithful representation of a combinatorial choice function is equivalent only to
IRI (Theorem 1). So, path independence places fewer restrictions on combinatorial choice if it is
demanded of the faithful rather than the forgetful representation.

By interpreting alternatives as items and budget sets as opportunity sets, a classical choice cor-
respondence can be mapped to combinatorial choice function in a manner that is the inverse of the
forgetful representation. Brandt and Harrenstein (2011) study set-rationalizability, which is ratio-
nalization of a classical choice correspondence by a binary relation on the power set of alternatives.
One of their main results is that a condition they call α̂ characterizes classical choice rules that
are set-rationalizable (their Theorem 2). It is straightforward to note rationalizability and IRI of a
combinatorial choice function implies set-rationalizability and condition α̂ of the forgetful represen-
tation. Since every classical choice correspondence is the forgetful representation of a combinatorial
choice function, Theorem 1 produces the same characterization as their Theorem 2. However, the
interpretations of these two results are different, and the other results in our papers diverge.

Finally, Chambers and Echenique (Forthcoming) characterize combinatorial demand functions
that are rationalizable by quasilinear preferences by the properties of continuity and the law of de-
mand. There is a homogeneous and continuous good, money, in addition to a set of items and
the bundles chosen are a functions of a money price for each item. Their model is suitable for the
analysis of package auctions and competitive markets with discrete goods and money. On the other
hand, in my model goods are completely heterogeneous and budget sets are combinatorially deter-
mined by a set of available items rather than by a price vector, making it the appropriate framework
for the study of markets without transferable utility. In this sense, our studies are complementary.

The rest of the paper is organized as follow. In Section 2, I define the combinatorial and classical
choice models, the faithful and forgetful representations, and a variety of choice conditions. In
Section 3, I describe the main results of the paper. In Section 4, I provide proofs of all the results.

4 Path independence requires that the choice from a union of sets is the union of the choices from each of the sets.
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2 Two choice models

2.1 Combinatorial choice

A combinatorial choice model is a pair (X,C) consisting of a nonempty setX and a correspondence
C : 2X ⇒ 2X . Elements of X are items. A bundle is a subset of items Z being consumed, where Z
could be the empty set ∅. An opportunity set is a subset of items Y that determines which items are
available for the construction of bundles. Correspondence C is the combinatorial choice rule that maps
every opportunity set Y ∈ 2X to a nonempty collection of bundles C(Y ) such that every chosen
bundle Z ∈ C(Y ) is constructed from available items (Z ⊆ Y ).5

A combinatorial choice rule C is single-valued if |C(Y )| = 1, and multi-valued otherwise. Note
that C being single-valued implies that for every Y ⊆ X , C(Y ) = {Z} for some Z ∈ 2Y . So, it is
possible that |C(Y )| = 1 and |Z| > 1, because the unique bundle chosen is composed of multiple
items. If single-valued, refer to C as a combinatorial choice function and identify C(Y ) with the unique
bundle it contains. In this case, C(Y ) = ∅ means that the choice from Y is the empty bundle.

2.2 Classical choice

A classical choice model is a triple (X ,B, c) consisting of nonempty sets X and B and a corre-
spondence c : B ⇒ X . Elements of X are mutually exclusive alternatives. Subsets B ⊆ X are budget
sets.6 The choice domain B is a nonempty collection of budget sets, i.e. B ⊆ 2X . Correspondence c
is the choice rule, where for every budget set in the choice domain (B ∈ B), every chosen alternative
must be available (c(B) ⊆ B) and at least one alternative must be chosen if at least one is available
(B ̸= ∅ implies c(B) ̸= ∅).

A choice rule c is single-valued if, for all nonempty B ∈ B, exactly one element of B is chosen:
|c(B)| = 1. It is multi-valued otherwise. When single-valued, the choice rule c can be naturally
identified as a choice function c : B → X . A choice function c̃ : B → X is a selection from a choice
rule c if, for all nonempty B ∈ B, c̃(B) ∈ c(B).

2.3 Representing combinatorial choice

Axioms for the classical choice model rely upon the interpretation that elements in X are mu-
tually exclusive alternatives. The following representation of a combinatorial choice model as a
classical one is faithful to this mutual exclusivity requirement.

5 It is possible that C(Y ) contains only the empty bundle ∅ for some Y ∈ 2X , i.e. C(Y ) = {∅}, but C(Y ) being
the empty collection is not allowed.

6 Allowing for an empty budget set is useful to show how a classical choicemodel is a particular kind of representation
of a combinatorial choice model, and is harmless.
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Definition 1. The faithful representation of a combinatorial choice model (X,C) is the classical choice model
(X ,B, c) defined by

1. X = 2X ,
2. B = 22

X ,
3. c(2Y ) = C(Y ) for every Y ⊆ X .

A commonly used alternative representation is the forgetful representation, where items are
identified as alternatives and opportunity sets as budget sets. This representation “forgets” the mu-
tual exclusivity requirement for elements inX . Any condition applied to the forgetful representation
has the same implications as applying the syntactically identical condition to the original combina-
torial choice model. However, since the interpretation of most axioms rely upon the interpretation
that elements in X are mutually exclusive, the forgetful representation does not preserve semantic
content.

Definition 2. The forgetful representation of (X,C) is the classical choice model (X ,B, c) defined by

1. X = X ,
2. B = 2X ,
3. c(Y ) = C(Y ) for every Y ⊆ X .

Note that if the combinatorial choice rule is not just single-valued but also the bundles chosen
contain at most one item (unit-demand), then items are essentially alternatives. In this case, the
combinatorial choice model is the same as a classical choice model with a complete choice domain,
i.e. the forgetful and faithful representations coincide.

2.4 Choice conditions, rationalizability, and revealed preference

Binary relations A binary relation R on a set A is a subset of the product space A×A. For every
a, a′ ∈ A, let a R a′ denote (a, a′) ∈ R. A binary relation R on a set A is reflexive if a R a for every
a ∈ A. It is complete if for every a, a′ ∈ A with a ̸= a′, a R a′ or a′ R a. It is antisymmetric if for
every a, a′ ∈ A, if a R a′ and a′ R a then a = a′. It is asymmetric if for every a, a′ ∈ A, a R a′

implies ¬(a′ R a). It is transitive if for every a, a′, a′′ ∈ A, a R a′ and a′ R a′′ implies a R a′′. It is a
linear order if it is complete, reflexive, transitive, and antisymmetric. A binary relation R on A is an
extension of a binary relation R′ on A if for every a, a′ ∈ A, i) a R′ a′ implies a R a′ ii) a R′ a′ and
¬(a R′ a′) implies a R a′ and ¬(a R a′) The transitive closure R̄ of a binary relation R on set A is
the smallest transitive relation that contains R. Formally, R̄ =

∩
R′∈Rt R′, whereRt is the set of all

transitive relations on A.
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Combinatorial choice conditions, rationalizability, the Blair relation

Let (X,C) be a combinatorial choice model with single-valued C. Combinatorial choice func-
tionC satisfies irrelevance of rejected items (IRI) (Alkan, 2002; Aygün and Sönmez, 2013) if the following
holds: for every Y, Y ′ ⊆ X , if C(Y ) ⊆ Y ′ ⊆ Y , then C(Y ) = C(Y ′). A combinatorial choice
function C satisfies substitutability (Kelso and Crawford, 1982; Roth, 1984) if the following holds: for
every Y, Y ′ ⊆ X and any y ∈ Y , if Y ⊆ Y ′ and y ∈ C(Y ′), then y ∈ C(Y ). Equivalently,
C(Y ′) ∩ Y ⊆ C(Y ).

Given a set of itemsX and a binary relationR on 2X , define the correspondenceCR : 2X ⇒ 2X

as follows: for every Y ⊆ X , CR(Y ) = {Z ⊆ Y : for all Z ′ ⊆ Y, Z R Z ′}, i.e. CR(Y ) is the set
of R-greatest bundles amongst those that can be constructed from opportunity set Y . Given some
combinatorial choice model (X,C), say C is rationalizable if there exists a binary relation R on 2X

such that C = CR. If R is transitive, then C is transitively rationalizable.
For a combinatorial choice function C, the Blair relation RB

C is a binary relation defined on 2X

as follows: Z RB
C Z ′ if and only if Z = C(Z ∪ Z ′), where Z,Z ′ ∈ 2X (Blair, 1988). Note that RB

C

is an antisymmetric relation since C is a function.

Classical choice conditions, rationalizability, and revealed preference

Let (X ,B, c) be a classical choice model. Choice domain B is complete if B = 2X . Choice
domain B is combinatorial if (X ,B, c) is the faithful representation of some combinatorial choice
model (X,C).

Choice rule c satisfies independence of irrelevant alternatives (IIA) (Nash, 1950) if the following holds:
For every B,B′ ∈ B, if c(B′) ⊆ B ⊆ B′, then c(B) = c(B′). Choice rule c has the Chernoff property
(Chernoff, 1954), also called condition α (Sen, 1971), if the following holds: for every B,B′ ∈ B

and for every Z ∈ B, if B ⊆ B′ and Z ∈ c(B′), then Z ∈ c(B). Choice rule c satisfies Arrow’s
axiom (Arrow, 1959) if the following holds: for all B,B′ ∈ B, if B ⊆ B′ and c(B′) ∩ B ̸= ∅, then
c(B) = c(B′) ∩ B. For a classical choice model (X ,B, c) with complete domain B, choice rule c
satisfies Plott path independence (Plott, 1973) if the following holds: for every B,B′ ∈ B, c(B ∪ B′) =

c(c(B) ∪ B′). I extend Plott path independence to models with arbitrary domains: choice rule c
satisfies path independence if for every B,B′ ∈ B such that B ∪ B′ ∈ B, c(B ∪ B′) = c(c(B) ∪ B′)

whenever c(B) ∪ B′ ∈ B.
Given a set of alternatives X , a choice domain B, and a binary relation R on X , the choice rule

generated by R, denoted cR, is defined as follows: for every B ∈ B, cR(B) = {Y ∈ B : for all Z ∈
B, Y R Z}, i.e. cR(B) is the set of R-greatest elements amongst the alternatives in the budget set
B. For (X ,B, c), say c is rationalizable if there exists a binary relation R on X such that c = cR. If
R is transitive, then c is transitively rationalizable.
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Define the revealed preference relation Rc of a classical choice model (X ,B, c) as follows: for all
Z,Z ′ ∈ X , Z Rc Z ′ if and only if there exists B ∈ B such that Z ∈ c(B) and Z ′ ∈ B. Say
that Z is revealed preferred to Z ′ if Z Rc Z

′. Define the revealed strict preference relation Rs
c as follows:

for all Z,Z ′ ∈ X , Z Rs
c Z ′ if and only if there exists B ∈ B such that Z ∈ c(B) and Z ′ ∈

B \ c(B). Say that Z is revealed strictly preferred to Z ′ if Z Rs
c Z ′. A classical choice model

(X ,B, c) satisfies the weak axiom of revealed preference (WARP) if for every Z,Z ′ ∈ X , Z Rs
c Z

′ implies
¬ (Z ′ Rc Z). It satisfies the strong axiom of revealed preference (SARP) if for every Z,Z ′ ∈ X , Z R̄s

c Z
′

implies ¬ (Z ′ Rc Z), where R̄s
c is the transitive closure of Rs

c.

3 Results
The main result of the paper is the following theorem. It states that any one of a variety of

choice conditions is necessary and sufficient to obtain a rationalizing preference.

Theorem 1. Let (X,C) be a single-valued combinatorial choice model, and let (X ,B, c) be its faithful repre-
sentation. Then the following statements are equivalent.

1. C satisfies IRI.
2. c satisfies WARP.
3. c satisfies IIA.
4. c satisfies path independence.
5. c satisfies the Chernoff property.
6. c satisfies Arrow’s axiom.
7. The Blair relation RB

C on 2X is order isomorphic to the revealed preference relation Rc on X .
8. The Blair relation RB

C rationalizes C .
9. There exists a complete, reflexive, and antisymmetric binary relation on 2X that rationalizes C .

10. There exists a binary relation on 2X that rationalizes C .

Alkan (2002) observes that the Blair relation resembles a revealed preference relation.7 Theorem
1 formalizes this idea, demonstrating their equivalence when the combinatorial choice function
satisfy IRI. However, this may not be true without IRI.8 It is also notable that completeness and
antisymmetry of preferences have no testable implications given rational choice.

7 The Blair relation is useful in understanding the core and the stable set in matching problems. In the context of
classical many-to-one matching, Martínez et al. (2012) use the Blair relation to identify the information in preferences
that is relevant to determine the set of core matches. Echenique and Oviedo (2006) use the Blair relation to study a
version of the core in the many-to-many setting.

8 Define (X,C) by X = {x, y} and C(Y ) = Y if Y ⊆ X \ {y} and C(Y ) = ∅ if y ∈ Y . Then C satisfies
substitutability but not IRI. Note that C(X) = ∅ implies ∅ Rc {x}, where c is the faithful representation of C.
However, ∅ ⊆ {x} and C({x}) = {x}, so {x} RB

C ∅. Since RB
C is antisymmetric by definition, ¬(∅ RB

C {x}).
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Theorem 1 has novel implications for classical choice theory, because it provides results for
classical choice functions on combinatorial domains. WARP is not necessary for rationalizability
of a choice rule when the choice domain is arbitrary (Richter, 1971), even when the choice rule is
single-valued. However, if the choice domain contains every doubleton and tripleton of alternatives
as budget sets,WARP is necessary and sufficient for transitive rationalizability (Sen, 1971). Theorem
1 shows the novel result that WARP characterizes rationalizability, albeit without transitivity, on
the combinatorial choice domain, even though this domain does not satisfy Sen’s doubleton and
tripleton requirement. The theorem also obtains new equivalences for other conditions on classical
choice functions with combinatorial domains.

I now consider combinatorial choice rules, i.e multi-valued combinatorial choice. For instance,
priorities in the Boston and New York City public school systems have ties. A lottery is used to break
ties and obtain a strict ordering over students . The combinatorial choice rules generated from pri-
ority structures with ties will generally be multi-valued.9 Since tie-breakers are a common approach
to make choice single-valued in applications (Erdil and Ergin, 2008; Abdulkadiroğlu et al., 2009),
a natural extension of IRI to arbitrary combinatorial rules is to insist that standard IRI be satisfied
by every selection obtained via an exogenous tie-breaker. Proposition 1 below offers a foundation
for this natural extension. It partly extends Theorem 1 by showing IRI of a combinatorial choice
rule is satisfied if and only if WARP is satisfied by its faithful representation.

Let (X,C) be a combinatorial choice model. A tie-breaker τ for (X,C) is a complete, transitive,
and asymmetric binary relation on 2X . Let Cτ denote the selection from C defined as follows: for
all Y ⊆ X , Cτ (Y ) = Z, where Z ∈ C(Y ), Z τ Z ′ for all Z ′ ∈ C(Y ) \ {Z}. In words, Cτ

is a tie-broken choice function from C. Combinatorial choice rule C satisfies extended-IRI if and
only if for every tie-breaker τ for (X,C), Cτ satisfies IRI. This natural extension requires that the
systematic approach of resolving indecisiveness through tie-breaking guarantees that the realized
single-valued choice satisfies IRI. Of course, extended-IRI is equivalent to IRI when C is single-
valued. It is important that the single-valued selection is obtained using a tie-breaker. Proposition
1 does not hold if arbitrary selections are allowed.10

Proposition 1. Let (X,C) be a combinatorial choice model, and let (X ,B, c) be its faithful representation.
Then c satisfies WARP if and only if C satisfies extended-IRI.

While Proposition 1 is a partial analogue of Theorem 1 for multi-valued combinatorial choice,
a full analogue cannot be obtained. For instance, WARP implies IIA in any classical choice model

9 See Erdil and Kumano (2014) and Alva and Manjunath (2017) for recent papers that work directly with multi-
valued combinatorial choice rules.

10 Consider the following counterexample: Let X = {x, y, z}, with every subset a feasible bundle. Define C by
C(Y ) = 2Y for Y ⊆ X , whose faithful representation c satisfies WARP trivially. However, consider the selection, C̃
satisfying: for each Y ⊆ X , C̃(Y ) = {x} if x ∈ Y and z ̸∈ Y , and C̃(Y ) = {y} if y ∈ Y and z ∈ Y . Then, C̃
violates IRI and its faithful representation c̃ violates WARP, since C̃({x, y}) = {x} and C̃({x, y, z}) = {y}.
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(Lemma 1 in the Appendix). However, Example 1 below reveals that even for combinatorial do-
mains, the equivalence between these properties relies upon choice being single-valued.11 There-
fore, a combinatorial choice model need not satisfy extended-IRI even if its faithful representation
satisfies IIA. The same can be stated about the Chernoff property or Arrow’s axiom in place of IIA.

Example 1. Let (X,C) be the combinatorial choice model defined by X = {x, y, z} and C

satisfying:

Y C(Y ) Y C(Y )

∅ {∅} {x, y} {{x}}
{x} {{x}} {x, z} {{x}}
{y} {{y}} {y, z} {{y}, {z}}
{z} {{z}} {x, y, z} {{y}, {z}}

Let (X ,B, c) be its faithful representation. It can be shown that c satisfies IIA. However, it does
not satisfy WARP, since {x} Rs

c {y} (via budget set 2{x,y}) but {y} Rs
c {x} (via budget set 2{x,y,z}).

Nor is it rationalizable. Moreover, it can be verified that every selection from C will violate IRI (and
every selection from c will violate WARP).

Finally, I consider the possibility of transitive rationalizability. Some of the results in the following
proposition are not new, but I state the equivalence here to contrast it with Theorem 1.

Proposition 2. Let (X,C) be a single-valued combinatorial choice model, and let (X ,B, c) be its faithful
representation. If C satisfies substitutability,12 then the following statements are equivalent.

1. c satisfies WARP.
2. c satisfies SARP.
3. RB

C transitively rationalizes C .
4. There exists a linear order on 2X that rationalizes C .

Weaker versions of substitutability have been studied in the matching with contracts literature
(Hatfield and Kojima, 2010). However, Proposition 2 is tight in the sense that these weaker ver-
sions would not suffice. Aygün and Sönmez (2012), for instance, have examples satisfying IRI and
weakened substitutability that do not satisfy SARP.

11 The equivalence can also fail when choice is single-valued if the domain is not combinatorial. Consider B =
{B,B′}, where B = {Z1, Z2, Z3} and B′ = {Z1, Z2, Z4}, and for i, j ∈ {1, 2, 3, 4}, Zi ∈ X for some set of mutually
exclusive alternatives X and Zi = Zj if and only if i = j. Suppose c(B) = {Z1} and c(B′) = {Z2}. Then choice is
single-valued, andWARP is violated, but IIA is trivially satisfied. Moreover, c is rationalizable by the revealed preference
relation Rc.

12The equivalence to statements 2. - 4. holds without substitutability.
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4 Proofs
The following two lemmas are useful to prove the main equivalence theorem, Theorem 1.

Lemma 1. Suppose a classical choice model (X ,B, c) satisfies WARP. Then it satisfies IIA.

Proof of Lemma 1. I begin with the following claim.
Claim: If Y Rc Z and Z Rc Y , then for every B ∈ B such that Y, Z ∈ B, Y ∈ c(B) if and

only if Z ∈ c(B).
Proof of Claim: By WARP, ¬ (Y Rs

c Z) and ¬ (Z Rs
c Y ). Given that Y ∈ c(B) and Z ∈ B,

¬ (Y Rs
c Z) implies Z ∈ c(B). Symmetrically, it can be established that Y ∈ c(B) if Z ∈ c(B) and

Y ∈ B. ■
Let B,B′ ∈ B, B′ ⊆ B and suppose c(B) ⊆ B′. By definition, c(B′) ⊆ B′. I need to show that

c(B′) = c(B).
Let Y, Z ∈ c(B). By the claim and the hypothesis that c(B) ⊆ B′, Y ∈ c(B′) if and only if

Z ∈ c(B′). Thus, if c(B) ∩ c(B′) ̸= ∅, then c(B) ⊆ c(B′).
Now, let Y, Z ∈ c(B′). By definition and by hypothesis, c(B′) ⊆ B′ ⊆ B, so by the claim,

Y ∈ c(B) if and only if Z ∈ c(B). Thus, if c(B) ∩ c(B′) ̸= ∅, then c(B′) ⊆ c(B).
Finally, suppose for the sake of contradiction that c(B) ∩ c(B′) = ∅. Let Y ∈ c(B) and Z ∈

c(B′), which are well-defined since the choice rule is nonempty valued. Notice that Z ∈ B \ c(B)
and Y ∈ B′ \ c(B′), so have Y Rs

c Z and Z Rs
c Y , which contradicts WARP.

Lemma 2. For a single-valued classical choice model (X ,B, c), the following are equivalent:

1. c satisfies the Chernoff property.
2. c satisfies IIA.
3. c satisfies Arrow’s axiom.

Proof of Lemma 2. Let B,B′ ∈ B, where B ⊆ B′. First, suppose the Chernoff property holds, so
c(B′) ∩ B ⊆ c(B). Suppose c(B′) ⊆ B. Then, c(B′) ⊆ c(B), and since c is single-valued (and
nonempty valued), c(B′) = c(B), so IIA is satisfied. Instead, suppose c(B′) ∩ B ̸= ∅. Since c
is single-valued, c(B′) ∩ B ̸= ∅ implies c(B′) ⊆ B. Suppose IIA holds. Then c(B) = c(B′) =

c(B′) ∩ B, so Arrow’s axiom is satisfied. Next, Arrow’s axiom is a strengthening of the Chernoff
property, and so implies it (even without single-valuedness of c).

Proof of Theorem 1. [IRI implies WARP] Suppose thatWARP is not satisfied, so that there existZ,Z ′ ∈
X such that Z Rs

c Z ′ and Z ′ Rc Z. Then, there exist Y, Y ′ ⊆ X such that Z,Z ′ ⊆ Y ∩ Y ′,
C(Y ) = Z, andC(Y ′) = Z ′. Now,C(Y ) = Z ⊆ Y ∩Y ′ ⊆ Y so, by IRI,C(Y ∩Y ′) = C(Y ) = Z.
Also, C(Y ′) = Z ′ ⊆ Y ∩Y ′ ⊆ Y ′ so, by IRI,C(Y ∩Y ′) = C(Y ′) = Z ′. But then I obtain Z = Z ′,
contradicting the hypothesis that Z Rs

c Z
′. Thus, WARP must hold if IRI is satisfied.
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[WARP implies RB
C = Rc] It is clear that RB

C ⊆ Rc even without WARP. Now, suppose Z Rc Z
′

for some Z,Z ′ ∈ X , i.e., there exists B ∈ B such that Z,Z ′ ∈ B, Z ∈ c(B). Since B is a
combinatorial domain, there exists Y ⊆ X such that B = 2Y , so Z ∪ Z ′ ⊆ Y . Since c is single-
valued, for every Z ′′ ∈ B where Z ′′ ̸= Z, Z Rs

c Z ′′. In particular, for every Z ′′ ∈ B′, where
B′ = 2Z∪Z′ ⊆ B, it is the case that Z Rs

c Z
′′. Then, by WARP, ¬(Z ′′ Rc Z). Thus, since c is not

empty-valued, c(B′) = {Z}, i.e. C(Z ∪ Z ′) = Z, implying Z RB
C Z ′.

[RB
C = Rc impliesRB

C -rationalizability] Let B ∈ B and Z ∈ c(B). Then, for all Z ′ ∈ B, Z Rc Z
′.

Thus, by definition, Z ∈ cRc(B). Hence, c(B) ⊆ cRc(B) = cRB
C (B), where the latter equality

follows by assumption. Next, let Y ⊆ X and B′ = 2Y . If Z,Z ′ ∈ cRB
C (B′), then by definition

Z RB
C Z ′ and Z ′ RB

C Z. The definition of the Blair relation implies that Z = C(Z ∪ Z ′) and
Z ′ = C(Z ′ ∪ Z), so Z = Z ′. Thus, c(B) ⊇ cRB

C (B). Thus, RB
C rationalizes c.

[RB
C -rationalizability implies complete, reflexive, antisymmetric rationalizability] Let ⊵ be an arbitrary

linear order onX . Define a binary relationR onX by the following conditions: a) for each Z ⊆ X ,
Z R Z, b) for all Z,Z ′ ⊆ X with Z ̸= Z ′, Z RB

C Z ′ implies Z R Z ′ and ¬(Z ′ R Z), and c) for
all Z,Z ′ ⊆ X with Z ̸= Z ′, if ¬(Z RB

C Z ′ or Z ′ RB
C Z), then Z R Z ′ if and only if Z ⊵ Z ′.

For Condition b) to be well-defined, RB
C should be antisymmetric. This is ensured by C being

single-valued. R is reflexive by Condition a) , and Condition b) and Condition c) together ensure
R is complete. Finally, R is antisymmetric because both RB

C and ⊵ are antisymmetric.
Let Y ⊆ X and B = 2Y . First, define Z = C(Y ). Since RB

C rationalizes C, for all Z ′ ⊆ Y ,
Z RB

C Z ′, and so, by Condition b) of the definition of R, Z R Z ′. Then, Z ∈ cR(B), so
c(B) ⊆ cR(B).

Next, let Z,Z ′ ∈ cR(B). Then, Z R Z ′ and Z ′ R Z, so Z = Z ′, by antisymmetry of R. So
|cR(B)| ≤ 1. Since c(B) is nonempty and a subset of cR(B), we have cR = c.

[complete, reflexive rationalizability implies rationalizability] This is immediate.
[rationalizability implies IRI] Let binary relation R rationalize c. Let Y ⊆ Y ′ ⊆ X , B = 2Y , and

B′ = 2Y
′ . Let Z ′ ∈ c(B′), i.e. Z ′ = C(Y ′). Then, rationalization by R implies Z ′ R Z for all

Z ∈ B′. Thus, if Z ′ ⊆ Y , then Z ′ R Z for all Z ∈ B, and so Z ′ ∈ c(B). Since c is single-valued,
c(B) = {Z ′} = c(B′), i.e. C(Y ) = C(Y ′).

[WARP implies IIA] Follows from Lemma 1.
[IIA implies WARP] Let Z,Z ′ ∈ X . Let B = 2Z∪Z′ ∈ B. Since B is a combinatorial domain,

for every B̃ ∈ B, if Z,Z ′ ∈ B̃, then B ⊆ B̃. Suppose Z Rs
c Z ′. Clearly, Z ̸= Z ′. Then

there exists B′ ∈ B such that Z,Z ′ ∈ B′, Z ∈ c(B′), and Z ′ ̸∈ c(B′). Since c is single-valued,
c(B′) = {Z}. Then c(B′) ⊆ B ⊆ B′, so by IIA, c(B) = c(B′) = {Z}. Now suppose, for the sake
of contradiction, that Z ′ Rc Z, i.e., there exists B′′ ∈ B such that Z,Z ′ ∈ B′′ and Z ′ ∈ c(B′′).
Since c is single-valued, c(B′′) = {Z ′} ⊆ B ⊆ B′′. But since Z ̸= Z ′, c(B′′) ̸= c(B), contradicting
IIA.
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[IIA implies the Chernoff property implies Arrow’s axiom implies IIA] Follows from Lemma 2.
[IRI implies path independence] Let B,B′ ∈ B, and let Y, Y ′ ⊆ X be such that B = 2Y and

B′ = 2Y
′ . Then, B ∪ B′ ∈ B if and only 2Y ∪ 2Y

′
= 2Z for some Z ⊆ X . This could only

be if Y ⊆ Y ′ or Y ′ ⊆ Y . So, the path independence condition applies only when considering
opportunity sets ordered by inclusion. Moreover, it is also necessary that c(B) ∪ B′ ∈ B. Then,
given that C is single-valued (and so c(B) = {C(Y )}), the path independence condition applies
only when C(Y ) ∈ 2Y

′
= B′, so that c(B) ∪ B′ = B′ ∈ B.

Therefore, path independence for the representation is equivalent to the following condition on
the combinatorial choice function: for Y, Y ′ ⊆ X with Y ⊆ Y ′, C(Y ∪ Y ′) = C(C(Y ) ∪ Y ′)

whenever C(Y ) ⊆ Y ′, and C(Y ∪ Y ′) = C(Y ∪ C(Y ′)) whenever C(Y ′) ⊆ Y . The first part
of this condition is trivially satisfied by every combinatorial choice function. Now, suppose that C
satisfies IRI. Then, since Y ⊆ Y ′, if C(Y ′) ⊆ Y then C(Y ) = C(Y ′). But then C(Y ∪ Y ′) =

C(Y ′) = C(Y ) = C(Y ∪ C(Y ′)), so obtain the second part of the condition.
[Path independence implies IRI] Let Y ⊆ Y ′ ⊆ X and suppose C(Y ′) ⊆ Y . Then C(Y ′) =

C(Y ∪ Y ′) = C(Y ∪ C(Y ′)), where the latter equality follows from path independence given the
assumption that C(Y ′) ⊆ Y . But the same assumption yields the conclusion that C(Y ∪C(Y ′)) =

C(Y ) and so path independence implies IRI.

The proof of Proposition 1 relies upon the following lemma. A tie-breaker τ for a classical choice
model (X ,B, c) is a complete, transitive, and asymmetric binary relation on X . Let cτ be the tie-
broken selection from c using tie-breaker τ , defined as follows: for every B ∈ B, Z ∈ cτ (B) if and
only if Z ∈ c(B) and for every Z ′ ∈ c(B), Z ′ ̸= Z implies Z τ Z ′.

Lemma 3. Let (X ,B, c) be a classical choice model. Then c satisfies WARP if and only if for every tie-breaker
τ the tie-broken selection cτ satisfies WARP.13

Proof of Lemma 3. [WARP for c implies WARP for all cτ ] Suppose c satisfies WARP. Let τ be a tie-
breaker and let cτ be the tie-broken selection from c. Let B ∈ B, Z = cτ (B), Z ′ ∈ B, and
Z ′ ̸= Z. For cτ to satisfy WARP, it is necessary that cτ (B′) ̸= Z ′ for every B′ ∈ B such that
Z,Z ′ ∈ B′.

The first case is where Z ′ ∈ c(B). Then, by definition of cτ , it must be that Z τ Z ′. Now,
consider any B′ ∈ B such that Z,Z ′ ∈ B′. Since c satisfies WARP, Z ∈ c(B′) if and only if
Z ′ ∈ c(B′). Then, since Z τ Z ′, cτ (B′) ̸= Z ′.

13 Ehlers and Sprumont (2008) study the implications of the weakened weak axiom of revealed preference (WWARP),
defined as follows: for every Z,Z ′ ∈ X , Z Rs

c Z
′ implies ¬(Z ′ Rs

c Z). It is clear that WWARP is equivalent to WARP
when the choice rule is single-valued, and so any selection from a choice rule satisfies WARP if and only if it satisfies
WWARP. Thus, the analog of Lemma 3 for WWARP is not true.

13



The second case is where Z ′ ̸∈ c(B), so that Z Rs
c Z ′. Consider any B′ ∈ B such that

Z,Z ′ ∈ B′. Since c satisfies WARP, ¬(Z ′ Rc Z), and so Z ′ ̸∈ c(B′), which immediately implies
cτ (B′) ̸= Z ′.

[WARP for all cτ implies WARP for c] Suppose for every tie-breaker τ the tie-broken selection cτ

from c satisfies WARP. Let B ∈ B, Z ∈ c(B), and Z ′ ∈ B \ c(B), so that Z Rs
c Z

′. For c to satisfy
WARP, it is necessary that Z ′ ̸∈ c(B′) for every B′ ∈ B such that Z,Z ′ ∈ B′, so that ¬(Z ′ Rc Z).

Consider B′ ∈ B such that Z,Z ′ ∈ B′. Let τ be the tie-breaker where Z ′τZτZ ′′ for every
Z ′′ ∈ X \ {Z,Z ′}. Then, cτ (B) = Z. Since cτ satisfies WARP, cτ (B′) ̸= Z ′. But since Z ′ is the
highest ranked bundle under τ , this implies that Z ′ ̸∈ c(B′).

Proof of Proposition 1. Since (X ,B, c) is the faithful representation of (X,C), by definition X = 2X ,
and so a tie-breaker for (X,C) is also a tie-breaker for (X ,B, c), and vice-versa. Then, given a tie-
breaker τ for (X,C), it is straightforward that (X ,B, cτ ) is the faithful representation of (X,Cτ ).
With this observation, the proof obtains from Lemma 3 and Theorem 1.

Proof of Proposition 2. [WARP impliesRB
C -transitive-rationalizability]Given WARP, by Theorem 1 C sat-

isfies IRI and RB
C rationalizes (B, c). Alkan (2002) shows that RB

C is transitive when C satisfies IRI
and substitutability.14 Then, RB

C transitively rationalizes (B, c).
[RB

C -transitive-rationalizability implies linear order rationalizability] Since C is single-valued, RB
C is an-

tisymmetric. By the Szpilrajn extension theorem, there exists a linear order R on 2X that extends
RB

C . By the following claim, cR = cRB
C , and so by the assumption of rationalizability byRB

C , cR = c.

Claim: Let R̃ be an antisymmetric relation on 2X and R̃′ be an extension of R̃. Suppose cR̃ is
nonempty-valued. Then, cR̃ is single-valued and cR̃′

= cR̃.
Proof of Claim: Let B ∈ B. First, nonempty-valued cR̃ and antisymmetry of R̃ implies that cR̃ is
single-valued, since Z,Z ′ ∈ cR̃(B) implies both Z R̃ Z ′ and Z ′ R̃ Z, and so Z = Z ′.

Let Z ∈ cR̃ and let Z ′ ∈ B.
By definition of cR̃, Z R̃ Z ′, so by definition of an extension, Z R̃

′
Z ′. Since Z ′ is arbitrary,

Z ∈ cR̃′
(B), so cR̃(B) ⊆ cR̃′

(B). Now suppose Z ′ ̸= Z, and note that Z is well-defined since cR̃

is nonempty-valued. From above Z R̃ Z ′, so antisymmetry of R̃ implies ¬(Z ′ R̃ Z). But then the
requirement for an extension implies that ¬(Z ′ R̃

′
Z), and so Z ′ ̸∈ cR̃(B).

Therefore, since B is arbitrary, cR̃′
= cR̃. ■

[linear order rationalizability implies SARP] See Richter (1966, 1971).
[SARP implies WARP] Immediate.15

14 In fact, Alkan (2002) shows that RB
C is a join-semilattice on the range of C. Koshevoy (1999) and Johnson and

Dean (2001) have analogous results for classical choice rules satisfying IIA and the Chernoff property.
15 Aygün and Sönmez (2013) show that IRI implies SARP given substitutability.
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