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Abstract

We consider a general model of indivisible goods allocation with choice-based pri-
orities, as well as the special case of school choice. Stability is the main normative
consideration for such problems. However, depending on the priority structure, it
may be incompatible with Pareto-efficiency. We propose a new criterion: an alloca-
tion is stable-dominating if it weakly Pareto-improves some stable allocation.

We show that if an allocation Pareto-improves on a particular non-wasteful (and
therefore stable) allocation, then it matches the same agents and matches the same
number of agents to each object. This is much like the conclusion of the Rural Hospi-
tals Theorem. In fact, we connect the existence of a stable-dominating and strategy-
proof rule and the Rural Hospitals Theorem on one hand with the existence of the
agent-optimal stable-dominating rule on the other.

For the school choice model, we also characterize the weak priority structures that
ensure every Pareto-efficient and stable-dominating rule is stable.

Finally, for the school choice model, we show that if a rule is Pareto-efficient,
stable-dominating and strategy-proof, then it is actually stable. We also show an alter-
native version of this result where we replace Pareto-efficiency with a mild regularity
condition.
Keywords: stable-dominating, rural hospitals theorem, school choice, stability,
JEL Codes: C78; D47; D71; D82

1 Introduction

We study the allocation of indivisible goods to agents, where the terms of an agent’s

assignment to an object may vary and each object is associated with a choice correspon-

dence describing priorities. The school choice problem is a special case with a single

*Some results in this paper were initially reported in an early working paper that included Alva and
Manjunath [2019].
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assignment-term and each object has a defined capacity and a ranking of agents (possibly

with ties) as its priority criterion.

The typical notion of fairness in the school choice setting is that of no justified envy
[Abdulkadiroğlu and Sönmez, 2003]. An agent envies another, at a particular allocation,

if she would rather be assigned the object that the other agent is assigned instead of

what she is actually assigned . Her envy is “justified” if she has “higher priority” at

the object than the agent she envies. A stable allocation is one that is fair in this sense

as well as non-wasteful1 and individual rational.2 For the general choice-based model,

stability is defined with respect to the profile of choice correspondences of objects, in

a manner that is consistent with its definition for the special setting of school choice.

Stability has been the main normative consideration in the literature on such problems.

However, depending on agents’ preferences and the priority structure (or choice profile),

preventing justified envy (or instability) may keep the allocation off of the Pareto frontier

[Balinski and Sönmez, 1999].

We propose a less demanding criterion for fairness: rather than insist an allocation be

stable itself, it need only (weakly) Pareto-improve a stable allocation. We call such alloca-

tions stable-dominating allocations. Consider the following thought experiment. Suppose

that an allocation µ is stable, yet another allocation ν Pareto-improves it. Starting at µ as

a reference point, if we move to ν, then no agent is worse off but some agents are better

off. The only situation where such a move may not be acceptable, given the standard nor-

mative criteria we have listed above, is when there is an agent i who is not harmed by the

move yet justifiably envies someone at ν. However, since µwas stable, i did not justifiably

envy anyone at µ. Our proposal is that such ν is not so bad after all. Agent i would not

object to the allocation µ, which is inferior in the Pareto sense. In particular, µ offers a

remedy to the situation that i may complain about ν, but a remedy that does not actually

benefit i. In other words, by offering the remedy of µ, one can make it unappealing for i

to complain about ν. Allocations like ν are what we call stable-dominating.

In this paper, we try to better understand what allocations are stable-dominating and

how to reconcile this requirement with that of good incentives.

First, we investigate some structural properties of the set of stable-dominating alloca-

tions in the general choice-based model. We show that if an allocation Pareto-improves

a non-wasteful allocation, then A) an agent is assigned to an object at the dominating

allocation if and only if she is assigned to an object at the improved allocation, B) every

object is assigned to the same number of agents by both allocations, and C) if an object

1 No object is left unassigned while some agent would prefer it to their assignment.
2 No agent is assigned an object they find worse than being unassigned.
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is not filled to capacity by the improved allocation, then it is assigned to precisely the

same agents by the dominating allocation. Using this result, we characterize the priority

structures in school choice problems for which the stable-dominating set coincides with

the stable set. The condition on priorities that guarantees this is slightly stronger than

the acyclicity condition of Ehlers and Erdil [2010].

We then turn to incentives. For the school choice setting, when priorities are strict

(that is, no two agents are tied in the ranking of any object), there exists a unique agent-

optimal stable-dominating rule [Alva and Manjunath, 2019]. For such priorities, the set

of stable allocations satisfies the “Rural Hospitals Theorem,” which states that an agent

is assigned to a school at one stable allocation if and only if she is assigned to a school

at every stable allocation [Roth, 1986]. Finally, the rule that selects the agent-optimal

stable allocation is strategy-proof (that is, it provides incentives for every agent to truth-

fully report her preferences) [Dubins and Freedman, 1981]. We show for the general

choice-based model that, given a profile of choice correspondences of objects satisfying

two conditions,3 the following statements are equivalent:

1. There exists an agent-optimal stable allocation for every profile of preferences at

the given choice profile.

2. At the given profile of choice correspondences, A) there is a unique stable-

dominating and strategy-proof rule and B) the Rural Hospitals Theorem holds.

In particular, the agent-optimal stable rule is the unique stable-dominating and strategy-

proof rule if the second statement above holds.

Finally, for the school choice model, we show that a stable-dominating rule can be

Pareto-efficient strategy-proof only if it is actually stable. Consequently, amongst the

broad class of known strategy-proof and Pareto-efficient rules [Pápai, 2000, Pycia and

Ünver, 2017], those rules that can be justified on the basis of being stable-dominating for

some priority structure are only those that are actually stable. We also show that subject

to a mild regularity condition, the only strategy-proof and stable-dominating rules are

actually stable.

The lesson here is that even though weakening stability to stable-domination affords

the designer some latitude to improve agents’ welfare for cyclic priorities, the require-

ment of strategy-proofness impedes the realization of such gains.

Related Literature: Given the incompatibility of stability and efficiency [Balinski and

Sönmez, 1999], there is a growing interest in notions of fairness weaker than stability.

3 The two conditions are idempotence and size monotonicity.
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Dur et al. [forthcoming] identify interesting Pareto-efficient rules that satisfy partial fair-

ness, which weakens stability to allow instances of justified envy from an exogenously-

specified collection. There exist allowable priority violations such that a partially fair

allocation is not stable-dominating and vice versa. Tang and Zhang [2017] define an al-

location as weakly stable if the only instances of justified envy that remain are those that

cannot be resolved without creating new instances of justified envy, and relate weakly

stable allocations to the outcomes of a generalized version of the efficiency-adjusted de-

ferred acceptance algorithm [Kesten, 2010, Tang and Yu, 2014]. In some problems, there

are weakly stable and Pareto-efficient allocations that are not stable-dominating, and

stable-dominating allocations that are not weakly stable. Troyan et al. [2018] identify

some instances of justified envy as vacuous. Roughly, an instance is vacuous if resolving

it, and iteratively resolving any subsequently-created instance, results in an allocation

that leaves the original envying agent worse off. They study the structure of the set of

essentially stable allocations, those that admit only vacuous instances of justified envy,

and show that the efficiency-adjusted deferred acceptance algorithm is essentially stable.

They show that every essentially stable allocation is stable-dominating, but that the con-

verse is not true. Ehlers and Morrill [2018] define the notion of legality, a property of a

set of allocations, rather than of an allocation in isolation. They show, for the matching

with contracts setting with substitutable and size-monotonic choice functions, that there

is a unique legal set, that it contains the stable set and has a lattice structure, and that the

efficiency-adjusted deferred acceptance algorithm produces the Pareto-optimal allocation

in the set.

Finally, our results imply that even weakening the requirement of stability to

stable-domination does not alleviate the tension between Pareto-efficiency and strategy-

proofness for arbitrary priorities. However, Troyan and Morrill [2019] have recently

proposed a weakening of strategy-proofness based on manipulations that are in a cer-

tain sense obvious. They show that, subject to a mild regularity condition, no stable-

dominating rule is obviously manipulable. Subject to an even weaker regularity condi-

tion, we show that the only stable-dominating and strategy-proof rules are also stable.

The remainder of the paper is organized as follows. We introduce a general choice-

based version of our matching model in Section 2.1 and the classical object allocation

model, which is a special case, in Section 2.2. All of our results are in Section 3: structural

results in Section 3.1 and those on incentives in Section 3.2.
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2 Models

We start with a very general choice-based matching model. In Section 2.2, we special-

ize this to the classical object allocation model and to school choice since the additional

structure allows us to prove stronger results.

2.1 Choice-based matching

Let N be a finite and nonempty set of agents, O be a finite and nonempty set of

objects, T be a nonempty set of terms under which an agent may be assigned an object,

X⊆ N ×O × T be a nonempty set of possible contracts, FN be a nonempty set of feasible
allocations for agents, FO be a nonempty set of feasible allocations for objects, and CO
be a combinatorial choice correspondence. A choice-based matching model is a tuple

(N,O,T ,X,FN ,FO,CO).

Each contract x ∈ X is a triple (i,o, t) ∈ N ×O × T that represents “i consumes o under

the terms t.” Let N (x) be the agent associated with x and O(x) be the object associated

with x. For each Y ⊆ X, let N (Y ) be the set of agents associated with triples in Y . For

each i ∈ N , let Y (i) be the triples in Y associated with i. For each o ∈ O, let Y (o) be the

contracts in Y associated with o.

An allocation µ is a subset of X. If µ(i) is empty for agent i, he consumes his outside
option, ∅. The participants at allocation µ, N (µ), are the agents associated with some

contract in µ.

Both FN and FO are collections of allocations, i.e. subsets of X. Let Fi be the set of all

µ ∈ FN at which i participates. From FO we define, for each o ∈ O, the feasible sets for o
Fo, which is the collection of subsets of X(o) that are included in some allocation µ in FO.

The set of feasible allocations is F = FN ∩FO.

The combinatorial choice correspondence models information about how sets of con-

tracts are prioritized at and across objects. The correspondence CO : 2X ⇒ 2X satisfies

(1) for each Y ⊆ X, CO(Y ) ⊆ 2Y , and (2) the range of CO is a subcollection of FO.4 Con-

dition (1) is the defining condition of a choice correspondence, requiring that, from any

given set of contracts, CO picks only subsets of it. Condition (2) requires any chosen set

to be feasible for objects.

Each agent i has preferences Ri . Let P̃i be the set of all possible preferences of i. A

problem is defined by a profile of preferences R from a domain of preference profiles

P ⊆ ×i∈N P̃i . A rule ϕ is a map from the domain P to feasible allocations F . If for R ∈ P
and µ ∈ F is such that µ = ϕ(R), then for each i ∈N denote by ϕi(R) the set µ(i).

4 The range of CO : 2X ⇒ 2X is {Z : Y ⊆ X,Z ∈ CO(Y )}.
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Assumptions on model primitives In any allocation feasible for agents (µ ∈ FN ), no

agent has more than one contract (for all i ∈ N , |µ(i)| ≤ 1). In any allocation feasible for

objects (µ ∈ FO), no object has more than one contract with any given agent (for all o ∈ O
and i ∈N , |µ(o)∩µ(i)| ≤ 1). Finally, FN and FO are such that F is nonempty.

The preference domain P is Cartesian, that is, for each i ∈N , there exists Pi ⊆ P̃i such

that P = ×i∈NPi . Each agent i’s preference Ri ∈ Pi depends only upon his own contract

in an allocation and are strict. These preferences are represented by linear orders over

X(i)∪ {∅}, and Pi is a collection of such linear orders.

For each i ∈ N , each Ri ∈ Pi , and each x ∈ X(i) such that x Pi ∅, if R′i ∈ Pi is such

that (1) x P ′i ∅, and (2) for each z ∈ X(i), x Pi z if and only if ∅ P ′i z. , then R′i is a weak
truncation of Ri at x. If, in addition, for each pair y,z ∈ X(i), z Pi y Pi x if and only if

z P ′i y P
′
i x, then R′i is a truncation of Ri at x. We assume that P satisfies the following

condition, which we call truncatability: For each i ∈ N , each Ri ∈ Pi , and each x ∈ X(i)

such that x Pi ∅, the truncation of Ri at x is in Pi . A weaker requirement, which we call

weak truncatability only requires the Pi to contain a weak truncation of Ri at x.

Truncatability is much weaker than the typical assumption in the literature that Pi
contains all strict preferences.

We impose the following restrictions on choice correspondences. Say CO is sizemono-
tonic if, for each Y ⊆ X, each finite Y ′ ⊆ Y , each Z ∈ CO(Y ), and each Z ′ ∈ CO(Y ′),

|Z | ≥ |Z ′ |.5,6 Say CO is idempotent if, for each Y ∈ range(CO), Y ∈ CO(Y ).7

Feasibility conditions Define the Cartesian hull of Y ⊆ 2X across O, denoted
⊔
OY , to

be {Y ⊆ X : ∀o ∈ O,∃Z ∈ Y ,Y (o) ⊆ Z}. We say that FO is Cartesian if FO =
⊔
OFO. When

FO is not Cartesian, there are cross-object constraints. We say that FO is capacity-based
if for each o ∈ O, there exists qo∈ Z+, its capacity, such that for every Y ⊆ X(o) such that

for each i ∈N , |Y (i)| ≤ 1, Y ∈ Fo if and only if |Y | ≤ qo.

2.2 Classical object allocation and school choice

The classical object allocation model is a tuple (N,O, (qo)o∈O), where N is a finite and

nonempty set of agents, O is a finite and nonempty set of objects, and for each o ∈ O, qo
is a non-negative integer capacity of o. An allocation µ is a function from N to O ∪ {∅}
such that |µ−1(o)| ≤ qo for each o ∈ O, where ∅ represents receiving no object. Since it

5 This is an extension to correspondences of a condition defined for choice functions [Alkan, 2002, Alkan
and Gale, 2003, Fleiner, 2003, Hatfield and Milgrom, 2005].

6 For finite Y , setting Y ′ = Y , size monotonicity implies that for each pair Z,Z ′ ∈ CO(Y ), |Z | = |Z ′ |.
7 This rules out, for instance, CO such that CO({x,y,z}) = {{x,y}} but CO({x,y}) = {{x}}.
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should not cause confusion, denote the set µ−1(o) by µ(o). Each agent has a preference

representable by a linear order over O∪{∅}. For each agent i, let P̃i be the set of all linear

orders on O ∪ {∅}. Let Pi be the strict component of Ri ∈ P̃i . A domain is P = ×i∈NPi ,
where Pi ⊆ P̃i for each i ∈N .

Every classical object allocation model can be represented in the general model as

follows: T is a singleton set {t}, X is N ×O × {t}, and FO =
⋃
o∈O{Y ⊆ X(o) : |Y | ≤ qo}, that

is, FO is Cartesian and capacity-based. Clearly, each agent’s preference over objects in a

classical object allocation model can be uniquely represented as a preference over triples.

School choice and priorities A school choice model (N,O, (qo,%o)o∈O) is a classical ob-

ject allocation model (N,O, (qo)o∈O) with priorities (%o)o∈O , where each %o is a complete,

reflexive, and transitive binary relation on N . We refer to agents as students and objects

as schools. Denote the strict component of %o by �o. Let %≡ (%o)o∈O be a list of priorities.

For each o ∈O, if o’s capacity is qo and priority is %o,

Each school choice model can be represented in the general model just as a classi-

cal object allocation with CO : 2X ⇒ 2X defined as follows: for each Y ⊆ X, CO(Y ) =⋃
o∈OCo(Y ), where

Co(Y ) =

 {Y (o)} if |Y (o)| ≤ qo,
{Z ⊆ Y (o) : |Z | = qo and for each z ∈ Z and y ∈ Y (o) \Z,N (z) %o N (y)} otherwise.

Note that CO is size monotonic and idempotent.

2.3 Properties of Allocations and Rules

In what follows, rules inherit properties defined for allocations in a pointwise fashion.

That is, rule ϕ has a particular property if for each R ∈ P , ϕ(R) has the property. We

extend relations defined amongst allocations to rules in a pointwise fashion as well. That

is, given a relation on allocations, a rule ϕ is related to another rule ϕ′ if for each R ∈ P ,

ϕ(R) is related to ϕ′(R).

Pareto-improvement One allocation Pareto-improves another if each agent finds the

first at least as desirable as the second. That is, for each R ∈ P and each pair µ,ν ∈ F , µ

Pareto-improves ν at R if, for each i ∈ N , µ(i) Ri ν(i).8 If µ Pareto-improves ν at R and

8 In this case, some authors say that µ weakly Pareto-improves ν. However, since this is the primary
Pareto-improvement relation that we consider, we drop the qualifier.
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there is i ∈ N such that µ(i) Pi ν(i), then α strictly Pareto-improves β at R. If µ ∈ F is

such that no allocation strictly Pareto-improves it at R, then µ is Pareto-efficient at R.

Individual Rationality An allocation is individually rational at preference profile R if

there is no participating agent who prefers the outside option to their assignment. That

is, µ ∈ F is individually rational at R if for each i ∈N , µ(i) Ri ∅.

Non-wastefulness For the classical object allocation model, Balinski and Sönmez

[1999] define non-wastefulness as follows: µ ∈ F is non-wasteful at R ∈ P if there is

no o ∈ O such that |µ(o)| < qo and i ∈ N such that o Pi µ(i). For our general model, we

present the following extension of non-wastefulness from Alva and Manjunath [2019]. It

says that an allocation is wasteful if there is a way to beneficially increase the number

of agents who are assigned a particular object without making any other agent worse off.

That is, given R ∈ P , µ ∈ F is wasteful at R if there are o ∈ O, i ∈ N , and ν ∈ F , such that

(1) |ν(o)| > |µ(o)|, so that ν allocates o to more agents than µ does, (2) ν(i) Pi µ(i), so that i

prefers his assignment at ν to that at µ, and (3) for each j ∈ N \ {i}, ν(j) Ri µ(j), so that no

agent is worse off at ν compared to µ. If it is not wasteful at R, then µ is non-wasteful at R.

Stability An allocation is stable (with respect CO) if it is feasible and individually ra-

tional and if no set of agents prefers to drop their assigned contracts in favor of being

assigned to new objects under some terms that the objects would prioritize. That is, al-

location µ is stable at R (given CO) if µ ∈ F , µ is individually rational at R,9 and there

is no Y ⊆ X \ µ such that (1) for each i ∈ N, |Y (i)| ≤ 1, (2) for each y ∈ Y ,y PN (y) µ(N (y)),

(3) µ < CO(µ ∪ Y ), (4) there is µ′ ∈ CO(µ ∪ Y ) such that Y ⊆ µ′, and (5) µ′ ∈ F .10 This

definition is equivalent to the standard one if CO is the union of a profile of single-valued

combinatorial choice functions for each object and FO is Cartesian. For each R ∈ P , we

denote by Σ(R) the set of stable allocations at R.

9 Individual rationality accounts for agents’ preferences while feasibility, along with the requirement
that, for each o ∈O, FO be the range of CO, accounts for objects’ choice correspondences.

10 Condition (1) says that Y contains at most one triple per agent. Condition (2) says that every agent
associated with a triple in Y finds it preferable to his triple in µ. These are familiar conditions from the
definition of stability for choice functions. Since we are concerned with choice correspondences, the next
part of the definition needs to be broken into two parts. The first, Condition (3), says the availability of Y
prevents the existing allocation µ from being chosen. The second, Condition (4), says that there is some
chosen set, µ, that contains “blocking” set Y . That is, Condition (3) and Condition (4) together say that
Y is contained in some µ′ that is revealed by CO to have a “higher priority” than µ. The standard defini-
tion of stability typically does not include Condition (3) since it is implied by Condition (4) when choice
correspondences are single-valued. Condition (5) ensures that the chosen rearrangement of assignments is
feasible, particularly relevant if FO is not Cartesian.
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Remark 1. If choice correspondences are size monotonic and idempotent, every stable alloca-
tion is non-wasteful (Lemma 2 of Alva and Manjunath [2019]).

For the school choice model, stability is equivalent to the combination of three proper-

ties: non-wastefulness, individually rationality, and the requirement that no agent “jus-

tifiably” envies another: if i, j ∈ N are such that i is assigned o and j prefers o to his own

assignment, then j ought not have higher priority at o than i.

Given R ∈ P , if a stable allocation µ Pareto-improves every other stable allocation at

R, then it is the agent-optimal stable allocation at R. If a stable allocation µ is Pareto-

improved by every other stable allocation at R, then it is the agent-pessimal stable alloca-

tion at R. Under only the assumptions of size monotonicity and idempotence, such stable

allocations are not guaranteed to exist. However, if CO is such that an agent-optimal sta-

ble allocation does exist for each R ∈ P , then we denote by ϕAOS the rule that selects this

allocation. Similarly, let ϕAP S select the agent-pessimal stable allocation at each R ∈ P .

Stable-dominating The constraints imposed by stability may keep a stable allocation

below the Pareto frontier. A less demanding requirement is that it Pareto-improves some
stable allocation. As discussed in the introduction, the existence of a stable allocation

Pareto-improved by a given allocation provides a viable defense against the objections

of agents whose priorities are violated. We call any such allocation a stable-dominating
allocation and, for each R ∈ P , denote the set by Σ↑(R). Since we do not insist on strict

Pareto-improvement, every stable allocation is stable-dominating. That is, for each R ∈ P ,

Σ(R) ⊆ Σ↑(R).

Non-manipulability A rule is strategy-proof if it is a weakly dominant strategy for

every agent to truthfully report his preferences. That is, ϕ is strategy-proof if for each R ∈
P , each i ∈ N , and each R′i ∈ Pi , ϕi(R) Ri ϕi(R′i ,R−i). A rule is strongly truncation-proof
if for each R ∈ P , each i ∈ N , and each R′i ∈ Pi , if R′i is a weak truncation of Ri at x ∈ X(i),

then ϕi(R) Ri ϕi(R′i ,R−i) R
′
i ϕi(R). A rule is truncation-proof if for each R ∈ P , each i ∈N ,

and each R′i ∈ Pi , if R′i is a truncation of Ri at x ∈ X(i), then ϕi(R) Ri ϕi(R′i ,R−i) R
′
i ϕi(R).

Note that by strategy-proofness, if R ∈ P and R′i ∈ Pi , then ϕi(R′i ,R−i) R
′
i ϕi(R). So,

both strong truncation-proofness and truncation-proofness weaken strategy-proofness,

by requiring the conclusion only for certain R′i .
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3 Results

We first present our results on the structure of stable-dominating allocations in Sec-

tion 3.1. In Section 3.2 we present our results on non-manipulability.

3.1 Structure of the Stable-dominating Set

In general, the existence of a stable allocation is not guaranteed, let alone the existence

of an agent-optimal stable allocation. Another property of the set of stable allocations that

is not guaranteed is the Rural Hospitals Theorem. The Rural Hospitals Theorem states

that the set of assigned agents as well as the number of agents assigned to each object is

invariant across all stable allocations.

Should the choice correspondences be such that stability implies non-wastefulness

and an agent-optimal stable allocation exists, then the Rural Hospitals Theorem is a con-

sequence of the following lemma.

Lemma 1 (Structure Lemma). For each R ∈ P and each pair µ,ν ∈ F , if µ is individually
rational and non-wasteful and ν Pareto-improves µ at R, thenN (µ) =N (ν) and for each o ∈O,
|µ(o)| = |ν(o)|.

Proof. Since µ is individually rational and non-wasteful, by Remark 4 and Lemma 1 of

Alva and Manjunath [2019], N (µ) =N (ν). Then, |µ| = |ν|.
Since µ(o) and µ(o′) are disjoint for distinct o,o′ ∈ O,

∑
o∈O |µ(o)| = |µ|. By similar rea-

soning,
∑
o∈O |ν(o)| = |ν|. Then,

∑
o∈O |µ(o)| =

∑
o∈O |ν(o)|. Since ν Pareto-improves µ and

µ is non-wasteful, by the definition of non-wastefulness there are two possibilities: (1) ν

does not strictly Pareto-improve µ or (2) for each o ∈O, |µ(o)| ≥ |ν(o)|. If ν does not strictly

Pareto-improve µ, then strict preferences implies for each i ∈N , ν(i) = µ(i). That is, ν = µ.

If ν strictly Pareto-improves µ, case (2) applies. Since
∑
o∈O |µ(o)| =

∑
o∈O |ν(o)|, for each

o ∈O, |µ(o)| = |ν(o)|.

This result sheds light on what drives the Rural Hospitals Theorem. The first is non-

wastefulness. The Structure Lemma says that, regardless of stability, at any pair of Pareto-

comparable allocations in the individually rational and non-wasteful set, the conclusion

of the Rural Hospitals Theorem holds. The only additional thing required is that every

pair of stable allocations be either directly or indirectly Pareto-comparable. This is guar-

anteed, for instance, if the agent-optimal stable allocation exists and CO is size monotonic

and idempotent.
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For models with capacity-based FO, like the classical object allocation model, we can

further strengthen the conclusion of the Structure Lemma: every object that is not allo-

cated to capacity by µ is allocated to the same agents by both µ and ν.

Lemma 2 (Capacity-based Structure Lemma). Let FO be Cartesian and capacity based. For
each R ∈ P and each pair µ,ν ∈ F , if µ is individually rational and non-wasteful and ν Pareto-
improves µ at R, then N (µ) =N (ν), for each o ∈O, |µ(o)| = |ν(o)|, and for each o ∈O such that
|µ(o)| < qo, N (µ(o)) =N (ν(o)).

Proof. The first two claims in the conclusion follow from the Structure Lemma. We prove

the last one by contradiction.

Let o ∈ O such that |µ(o)| < qo, and suppose N (ν(o)) , N (µ(o)). Since |ν(o)| = |µ(o)|,
there exists i ∈ N (ν(o)) \N (µ(o)). Let x = ν(i). Given that N (ν) = N (µ), there is o′ , o

such that y ∈ µ(o) and N (y) = i. By strict preferences, ν(i) = x Pi y = µ(i), so ν is a strict

Pareto-improvement of µ.

Since FO is capacity-based and |µ(o)| < qo, µ(o) ∪ {x} ∈ Fo and µ(o′) \ {y} ∈ Fo′ . Let

γ ≡ (µ \ {y})∪{x}. Since FO is Cartesian, γ ∈ FO. For each j ∈N \ {i}, γ(j) = µ(j), and γ(i) =

x Pi y = µ(i), so γ is a strict Pareto-improvement of µ. But |γ(o)| > |µ(o)|, contradicting the

assumption that µ is non-wasteful.

Relative to the Rural Hospitals Theorem, the strong Rural Hospitals Theorem addi-

tionally states that the set of agents matched to an object not filled to capacity is invariant

across stable allocations. It is straightforward to see for capacity-based F that Lemma 2

drives the strong Rural Hospitals Theorem. It also facilitates analogous variants of Propo-

sitions 2, 3, and 4, below.

Lemma 2 narrows down the ways in which an individually rational and non-wasteful

allocation can be Pareto-improved when feasibility is capacity-based and preferences are

strict. Suppose that µ,ν ∈ F are such that µ is individually rational and non-wasteful

and ν Pareto-improves µ. By Lemma 2, each agent to whom µ assigns an object that it

does not allocate to capacity receives the same object from ν. So the only way that ν can

change the allocation of objects is through trading-cycles consisting of agents to whom µ

assigns objects that are allocated to capacity. That is, ν assigns to each agent the object

that µ assigns to the next agent in the cycle (possibly under different terms). In particular,

if T is a singleton then every Pareto-improvement from a non-wasteful allocation results

from a set of disjoint trading-cycles.

Now consider the school choice model. Ergin [2002] shows that, for strict priori-

ties, unless they satisfy a restrictive condition that he calls “acyclicity”, stability and ef-

ficiency are at odds. That is, unless priorities are acyclic, the agent-optimal stable rule
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is not Pareto-efficient. When priorities are so weak as to be degenerate (in the sense of

each agent having equal priority at each object), stability reduces to the combination of

individually rationality and non-wastefulness, so each individually rational and Pareto-

efficient allocation is also stable. On the other hand, if priorities are strict and each object

has the same priority over agents, then there is a unique stable allocation and it is Pareto-

efficient. The tension between stability and efficiency is thus dependent on whether pri-

orities are weak and whether they are heterogeneous across objects.

Ehlers and Erdil [2010] define the following property of the priorities to guarantee

that if a stable allocation is not strictly Pareto-improved by any other stable allocation,

then it is actually Pareto-efficient.11 They say that % contains a weak cycle if there is a

distinct triple i, j,k ∈ N and a distinct pair x,y ∈ O such that a) (loop) i %x j �x k and

k %y i, and b) (scarcity) there exist disjoint Nx ⊆ N \ {i, j,k} and Ny ⊆ N \ {i, j,k} such that

for each l ∈Nx, l %x j, each l ∈Ny , l %y i, |Nx| = qx − 1, and |Ny | = qy − 1. They say that % is

strongly acyclic if it does not contain a weak cycle. Under a slightly stronger condition, we

can say something about all stable allocations. We define a weak∗ cycle exactly as a weak

cycle except that we only require Ny ⊆N \ {i,k} rather than Ny ⊆N \ {i, j,k} in the scarcity

condition. If it does not contain a weak* cycle, % is strongly* acyclic.

Proposition 1. For any (%,q) the following statements are equivalent:

1. % is strongly* acyclic

2. µ ∈ F is stable-dominating if and only if it is stable

Proof. First, we show that strong* acyclicity is sufficient for a stable-dominating allo-

cation to be stable. By the Structure Lemma, each allocation that Pareto-improves on µ

reallocates objects among agents in (possibly several) cycles so that each agent obtains the

object assigned by µ to the next agent in the cycle. If the same object appears twice in the

same cycle, we can divide the cycle into two separate cycles. Thus, it suffices to show that,

for each cycle S, µS ∈ F defined below is stable, where a cycle S is a set {i1, . . . , in} ⊆N that

satisfies, for each pair i, j ∈ S, µ(i) , µ(j), and for each l ∈ {1, . . . ,n}, µ(il+1) Pil µ(il), where

we identify in+1 ≡ i1 and i0 ≡ in. It is clear that n ≥ 2. For each i ∈N ,

µS(i) =

 µ(i) if i < S,

µ(il+1) if i = il where l ∈ {1, . . . ,n}.

11 Ehlers and Westkamp [2018] provide conditions on priorities that guarantee the existence of a strategy-
proof rule that selects such a stable allocation.
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For each l ∈ {1, . . . ,n}, let ol ≡ µ(il). Since µ is stable and ol = µS(il−1) Pil−1
µ(il−1), for each

l ∈ {1, . . . ,n}, il %ol il−1 and |µ(ol)| = qol . Let Nol ≡ µ(ol) \ {il}. Since |µ(ol)| = qol , |Nol | = qol −1.

Since µ(il−1) , ol , il−1 < Nol . Since µ is stable, for each k ∈ Nol , k %ol il−1. Thus, for each

l ∈ {1, . . . ,n}, il , il−1 <Nol . Further, for each pair o,o′ ∈ {o1, . . . , on}, No and No′ are disjoint.

Suppose that µS is not stable. Since it is non-wasteful and individually rational, it

violates priorities. Without loss of generality, there is j such that j �o2
i1 and o2 Pj µ

S(j).

However, since µS(j) Rj µ(j) and µ is stable, for each k ∈ µ(o2), k %o2
j. In particular, for

each k ∈ No2
⊆ µ(o2), k %o2

j, and i2 %o2
j. Thus, i2 %o2

j �o2
i1. We have that % is strongly*

acyclic, No2
and No3

are disjoint, i2, i1, j < No2
, and i2 < No3

. Then either i2 �o3
i1 or

i1 ∈No3
. If i1 ∈No3

, then by definition of No3
, µ(i1) = o3, and so o3 = o1. But i1 <No1

=No3
,

a contradiction. Thus i2 �o3
i1, so i3 %o3

i2 �o3
i1. Again, we have that % is strongly*

acyclic, No3
and No4

are disjoint, i3, i2, i1 < No3
, and i3 < No4

. Then either i3 �o4
i1 or

i1 ∈ No4
. If i ∈ No4

, then by definition of No4
, µ(i1) = o4, and so o4 = o1. But i1 < No1

= No4
,

a contradiction. Thus i3 �o4
i1 so that i4 %o4

i3 �o4
i1. Repeating the argument, we have

in %on in−1 �on i1. However, since i1, in, in−1 < Non , i1, in < No1
, and i1 %o1

in, contradicting

the assumption that % is strongly* acyclic. Thus, µS is stable.

Second, we show that strong* acyclicity is necessary for each stable-dominating al-

location to be stable. Suppose % contains the weak* cycle: there exists o1, o2 ∈ O,

i %o1
j �o1

k %o2
i, where No1

⊆ N \ {i, j,k}, |No1
| = qo1

− 1, No1
⊆ {m ∈ N : m %o1

j} and

No2
⊆N \ {i,k}, |No2

| = qo2
− 1, No2

⊆ {m ∈N :m %o2
j}.

If j < No2
or qo2

= 1, then this weak* cycle is also a weak cycle. Then by Ehlers and

Erdil [2010], there exists a constrained efficient stable allocation that is not efficient, and

so there exists a stable-dominating allocation that is not stable.

So, assume qo2
> 1 and j ∈ No2

. Notice that j %o2
i. Consider the preference profile

given below, where l is a generic agent in No1
, m is a generic agent in No2

\ {j}, and every

agent not amongst {i, j,k} ∪No1
∪No2

ranks ∅ at the top:

Pi Pj Pk Pl Pm
o2 o1 o1 o1 o2

o1 o2 o2

Define allocation µ by µ(i) = µ(l) = o1 and µ(j) = µ(k) = µ(m) = o2, for every l ∈ No1
and

m ∈ No2
\ {j}. Every other agent is left unmatched. Notice that µ is stable at the given

preference profile. Define allocation µ̂ by µ̂(i) = µ̂(j) = µ̂(m) = o2 and µ̂(k) = µ̂(l) = o1,

for every l ∈ No1
and m ∈ No2

\ {j}. Every other agent is left unmatched. Clearly µ̂ Pareto-

improves µ, and so it stable-dominating. However, j blocks µ̂with o1, so µ̂ is unstable.
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The following example shows that Proposition 1 does not hold under the slightly

weaker condition of Ehlers and Erdil [2010]. In the proof of the proposition, we see

that each “improving cycle” is a “stable improving cycle” [Erdil and Ergin, 2008] under

the stronger condition. Under the weaker condition, one can only show that whenever

there is an improving cycle, there is at least one stable improving cycle.

Example 1. Proposition 1 does not hold if % is only strongly acyclic.
Let O ≡ {o1, o2} and N ≡ {i1, i2, i3}. Let qo1

= 1 and qo2
= 2. Define % as follows:

%o1
%o2

i1, i2 i1, i2, i3
i3

Since there are only three agents, the scarcity condition for a weak cycle is never met.

Thus, % is strongly acyclic despite the loop condition being satisfied. However, the

scarcity condition for a weak* cycle is met, so % is not strongly* acyclic. Consider P ∈ P
as follows:

Pi1 Pi2 Pi3
o2 o1 o1

o1 o2 o2

Let µ ∈ F be such that µ(i1) = o1, µ(i2) = o2, and µ(i3) = o2. Though µ is stable, it is not

Pareto-efficient. There are two Pareto-improving cycles: i1 and i2 trade their assignments

or i1 and i3 trade their assignments. The latter leads to an unstable allocation.

An implication of Proposition 1 is that the requirement that a rule be stable-

dominating is equivalent to the requirement that it be stable if and only if priorities are

strongly* acyclic. Thus, as long as priorities are not strongly∗ acyclic, weakening stability

to stable-domination yields welfare gains.

3.2 Incentives, Stable-dominating Rules, and the Rural Hospitals The-

orem

Corollary 5 of Alva and Manjunath [2019] establishes that when priorities are strict,

ϕAOS is the only stable-dominating rule that is strategy-proof. As we have discussed

following the Structure Lemma, the existence of ϕAOS is a sufficient condition for the

Rural Hospitals Theorem to hold. Indeed, we show in this section that the following are

intimately related: (1) the existence of ϕAOS , (2) the existence of a stable-dominating and
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strategy-proof rule, and (3) the Rural Hospitals Theorem.12

We begin with a lemma, similar to Corollary 1 of Alva and Manjunath [2019]. In rela-

tion to that result, we weaken strategy-proofness to truncation-proofness but strengthen

the domain condition to strict preferences satisfying truncatability. A pair of rules ϕ and

ϕ′ are defined to be participation-equivalent if for each R ∈ P , N (ϕ(P )) =N (ϕ′(P ))).

Lemma 3 (Participation-equivalence Lemma). Let the preference domain satisfy truncata-
bility. If a pair of truncation-proof and individually rational rules, ϕ and ϕ′, are participation-
equivalent, then they are identical.13

Proof. Suppose ϕ and ϕ′ are not identical. We will obtain a contradiction.

Let R ∈ P such that ϕ(R) , ϕ′(R). By strict preferences, there are i ∈ N and x ∈ X(i)

such that, without loss of generality, x = ϕ′i(R) Pi ϕi(R). By participation-equivalence

and individual rationality, ϕi(R) Pi ∅. By truncatability, there is R′i ∈ Pi such that R′i
is a truncation of Ri at x and R′i , Ri . By truncation-proofness, ϕ′i(R

′
i ,R−i) R

′
i ϕ
′
i(R) =

x Ri ϕ
′
i(R
′
i ,R−i). By definition of a truncation, ϕ′i(R

′
i ,R−i) Ri x. So, by strict preferences,

ϕ′i(R
′
i ,R−i) = x.

By individual rationality, ϕi(R′i ,R−i) R
′
i ∅. By participation-equivalence, there exists

y ∈ X(i) such thatϕ(R′i ,R−i) = y. So by strict preferences and individual rationality, y P ′i ∅.

By definition of a truncation, y Ri x. However, this means ϕi(R′i ,R−i) = y Ri x Pi ϕi(R),

contradicting truncation-proofness of ϕ.

First, we show existence of ϕAOS ensures that ϕAOS is the unique stable-dominating

and truncation-proof rule and that the Rural Hospitals Theorem holds, given size mono-

tonicity and idempotence of CO.14

Proposition 2. If ϕAOS exists, then it is the unique stable-dominating and truncation-proof
rule and the Rural Hospitals Theorem holds.

Proof. A stable allocation is also non-wasteful (Remark 1). By definition, for each R ∈ P ,

ϕAOS(R) Pareto-improves each stable allocation at P . Thus, by the Structure Lemma, the

Rural Hospitals Theorem holds.

The proofs of Theorems 10 and 11 of Hatfield and Milgrom [2005] use only the conclu-

sion of the Rural Hospitals Theorem to show that ϕAOS is strategy-proof in their setting.

12 Hatfield and Kojima [2010] provide conditions on single-valued C that guarantee the first two state-
ments.

13 The lemma also holds if truncatability is weakened to weak truncatability and truncation-proofness is
replaced by strongly truncation-proofness.

14 Though Hirata and Kasuya [2017] show that whenever ϕAOS exists it is the only candidate for a stable
and strategy-proof rule, Alva and Manjunath [2019] show that this is not so for our setting.
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Since they work on the entire strict preference domain and F is a subset of their set of

feasible allocations, as long as the Rural Hospitals Theorem holds and ϕAOS exists, it is

strategy-proof, and so truncation-proof, in our setting.

Next, if any other rule ϕ is stable-dominating, there exists a stable ϕ that both ϕ and

ϕAOS Pareto-improve, where ϕ is also non-wasteful (Remark 1). Then, from the Structure

Lemma, for each R ∈ P , N (ϕ(R)) = N (ϕ(R)) = N (ϕAOS(R)). By Participation-equivalence

Lemma, if ϕ is truncation-proof as well, then ϕ = ϕAOS . Thus ϕAOS is the only stable-

dominating and truncation-proof rule.

Second, towards a converse of Proposition 2, we first show that if the Rural Hospitals

Theorem holds, then there can be at most one stable-dominating rule that is truncation-

proof. This follows from the Structure Lemma and the Participation-equivalence Lemma.

Proposition 3. If the Rural Hospitals Theorem holds, then there is at most one stable-
dominating and truncation-proof rule.

Proof. Let ϕ and ϕ′ be stable-dominating and truncation-proof rules. For each R ∈ P ,

there exist stable µ,µ′ ∈ F such that ϕ(R) Pareto-improves µ and ϕ′(R) Pareto-improves

µ′. By Remark 1 and the Structure Lemma, N (ϕ(R)) =N (µ) and N (ϕ′(R)) =N (µ′). By the

Rural Hospitals Theorem, N (µ) = N (µ′), so N (ϕ(R)) = N (ϕ′(R)). Since stable-dominating

rules are individually rational, by the Participation-equivalence Lemma, ϕ = ϕ′.

Third, we show that if the Rural Hospitals Theorem holds, then a stable-dominating

and truncation-proof rule Pareto-improves every stable rule.

Proposition 4. If the Rural Hospitals Theorem holds and ϕ is a stable-dominating and
truncation-proof rule, then ϕ Pareto-improves every stable rule.

Proof of Proposition 4. For the sake of contradiction, suppose that there are R ∈ P and

ν ∈ F such that ν is stable at R and ϕ(R) does not Pareto-improve ν. So there is i ∈N such

that ν(i) Pi ϕi(R). By individual rationality, ν(i) , ∅. By the Rural Hospitals Theorem,

ϕi(R) , ∅.

Since P satisfies truncatability, there exists R′i ∈ P such that R′i is a truncation of Ri at

ν(i). Note that R′i , Ri , since ν(i) Pi ϕi(R) Pi ∅. Let R′ = (R′i ,R−i).

We first show, by contradiction, that ν is stable at R′. If ν is not stable at R′, there is

Y ⊆ X \ν such that, for each i ∈N , |Y (i)| ≤ 1, for each z ∈ Y , z P ′N (z) ν(N (z)), ν < CO(ν ∪Y ),

and there is γ ∈ CO(ν∪Y ) such that Y ⊆ Z and γ ∈ F . Since, for each j ∈N \{i}, R′j = Rj and

ν is stable at R, there is z ∈ Y such thatN (z) = i. However, since z P ′i ν(i), we have z Pi ν(i),

by definition of R′i . But then Y would undermine the stability of ν at R, a contradiction.
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By the Rural Hospitals Theorem, since ν(i) , ∅, for each µ ∈ Σ(R′), µ(i) , ∅. Thus, by

the Structure Lemma, for each µ ∈ Σ↑(R), µ(i) , ∅. So ϕi(R′) , ∅. Since ϕ is individually

rational and the definition of R′i , ϕi(R
′) P ′i ∅ P

′
i ϕi(R). Then, by definition of a truncation,

ϕi(R′) Ri ν(i) Pi ϕi(R). However, this contradicts the truncation-proofness of ϕ, which

requires that ϕi(R) Ri ϕi(R′).

Propositions 3 and 4 together imply that, when the Rural Hospitals Theorem holds,

if a rule is stable and truncation-proof, then it coincides with ϕAOS and is the unique

stable-dominating and truncation-proof rule.

We consider specifically the school choice model. While we cannot pin down all

stable-dominating and strategy-proof rules for general priorities, we are able to say more

if they are also Pareto-efficient. For the following result, we again assume that P is closed

under truncation.

Proposition 5. Consider a Pareto-efficient rule in the school choice model. If it is stable-
dominating and truncation-proof, then it is stable.

Proof. If priorities are strict then, by Proposition 2 the agent-optimal stable rule is the

unique truncation-proof and stable-dominating rule [Alva and Manjunath, 2019]. Thus,

for strict priorities every truncation-proof and stable-dominating, efficient or not, is sta-

ble.

If priorities satisfy strong∗ acyclicity, then every stable-dominating allocation is stable.

Thus, every stable-dominating rule, truncation-proof and efficient or not, is stable.

This leaves the case of weak priorities that contain a weak∗ cycle. By the scarcity

condition in the definition of a weak∗ cycle, it is without loss of generality to assume that

O = {a,b}, qa = qb = 1, and N = {1,2,3}—since we consider stable-dominating rules, we

may consider profiles of preferences where agents other than 1, 2, and 3 find only one

object acceptable and agents 1,2, and 3 find all objects but a and b to be unacceptable.

Given three agents and two objects, each with capacity of one, suppose that the agents

and objects are labeled such that the following weak∗ cycle appears in the priorities: 1 %a
2 �a 3, 3 �b 1, and 3 �b 2.

Fix P ∈ P as follows:
P1 P2 P3

b b a

a a b

∅ ∅ ∅

Let ϕ be an efficient and stable-dominating rule. We distinguish two cases.
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Case 1: 1 ∼a 2. There are two stable allocations: (a,∅,b) and (∅, a,b).15 Since ϕ is effi-

cient and stable-dominating, ϕ(P ) ∈ {(b,∅, a), (∅,b,a)}. Suppose ϕ(P ) = (b,∅, a) and

consider the truncation of P3 at a:
P ′3
a

∅

b

There are only two stable allocations at (P1, P2, P
′
3): (a,b,∅) and (b,a,∅). Since each

of these assigns ∅ to 3 and ϕ is stable-dominating, by the Structure Lemma, ϕ is

ϕ3(P1, P2, P
′
3) = ∅. Then, a = ϕ3(P1, P2, P3) P ′3 ϕ(P1, P2, P

′
3) = ∅, so ϕ is not truncation-

proof.

If, on the other hand, ϕ(P ) = (∅,b,a), the proof is analogous.

Case 2: 1 �a 2 The unique stable allocation is (a,∅,b). By the Structure Lemma, since

ϕ is efficient and stable-dominating, ϕ(P ) = (b,∅, a). By an analogous argument to

Case 1, we conclude that ϕ is not truncation-proof.

The broad class of known truncation-proof and Pareto-efficient rules [Pápai, 2000,

Pycia and Ünver, 2017] for the subdomain of P where agents rank ∅ below each o ∈ O
are readily extended to P . Proposition 5 says that unless the priorities are such that

there is a truncation-proof and Pareto-efficient rule that is also stable, none of these

rules—including the top trading cycles rules [Abdulkadiroğlu and Sönmez, 2003], which

interpret priorities as providing ownership and not just consumption rights—can be

justified on the basis being stable-dominating. In the case of unit capacity for objects,

Han [2018] characterizes the priority structures that admit rules that are group strategy-

proof, Pareto-efficient, and stable. By Proposition 5, stability can be weakened to stable-

dominating in this characterization.16

For strict priorities, in light of Proposition 5, the agent-optimal stable rule is the

unique candidate for a truncation-proof, Pareto-efficient, and stable-dominating rule.

Thus, there exists a truncation-proof, Pareto-efficient, and stable-dominating rule if and

only if the priority structure is Ergin-acyclic [Ergin, 2002]. Moreover, the top trading cy-

cles rule is stable-dominating (or stable) if and only if it coincides with the agent-optimal

15 We represent µ ∈M in the format of (µ(1),µ(2),µ(3)).
16 Han [2018] and Ehlers and Westkamp [2018] also give necessary and sufficient conditions for existence

of a strategy-proof rule that is stability-constrained Pareto-efficient.
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stable rule. In turn, the top trading cycles rule coincides with the agent-optimal stable

rule if and only if the priority structure satisfies Kesten-acyclicity [Kesten, 2006].

Proposition 5 tells us that among truncation-proof rules, stable-domination is compat-

ible with Pareto-efficiency only when stability itself is compatible with Pareto-efficiency.

However, it leaves open the possibility that weakening stability to stable-domination may

expand the set of truncation-proof rules. Indeed, Troyan and Morrill [2019] have recently

shown that stable-dominating rules have some desirable strategic properties. Rather than

strategy-proofness, they consider a strategic requirement on rules that allows manipula-

tions, but only if they are not “obvious.” They show that, under a regularity condition, no

stable-dominating rule, regardless of the priority structure, is obviously manipulable.17

We weaken their condition to the following. A rule ϕ satisfies truncation non-
bossiness if for each R ∈ P , each i ∈ N , and each R′i ∈ Pi , if R′i is a truncation of Ri at

ϕi(R) and ϕi(R′i ,R−i) = ϕi(R), then ϕ(R′i ,R−i) = ϕ(R).

It turns out that, among rules satisfying truncation non-bossiness, if we insist on

truncation-proofness, we do not expand the set of admissible rules by weakening the

requirement of stability to stable-domination.

Proposition 6. Consider a truncation non-bossy rule in the school choice model. If it is stable-
dominating and truncation-proof, then it is stable.

Proof. Suppose that ϕ satisfies truncation non-bossiness, truncation-proofness, and

stable-domination.

First, for each i ∈N and each Ri ∈ Ri , let λ(Ri) = |{o ∈O : o Pi ∅}|, the cardinality of the

strict upper level set of Ri at ∅. Let R,R′ ∈ P . Define R 6 R′ if and only if for each i ∈ N ,

λ(Ri) ≤ λ(R′i). Denote the strict part of 6 by <.

For each R ∈ P , if there exists i ∈ N and o ∈ O such that ϕi(R) Pi o Pi ∅, then there

exists R′i ∈ Pi such that R′i is a truncation of Ri at ϕi(R) and R′i , Ri , since P satisfies

truncatability. But then (R′i ,R−i) < R.

Note that if, for each i ∈ N , λ(Ri) = 0, then the unique stable allocation assigns ∅ to

each agent, and is also Pareto efficient. So for such R, ϕ(R) is stable at R. This establishes

that, for any sufficiently truncated R ∈ P , ϕ(R) is stable.

Suppose there is R ∈ P such that ϕ(R) is not stable at R. By the above observation

regarding sufficiently truncated preferences, it is without loss of generality to assume

17 A preference R′i ∈ Pi is a lower reshuffling of a preference Ri ∈ Pi at allocation µ(i) if for every o,o′ ∈
O, o Ri o′ Ri µ(i) if and only if o R′i o

′ R′i µ(i). The regularity condition of Troyan and Morrill [2019] is
independence of irrelevant rankings of ϕ: for each R ∈ P , each i ∈ N , and each R′i ∈ Pi , if R′i is a lower
reshuffling of Ri at ϕi(R), then ϕ(R) = ϕ(R′i ,R−i). That is, the rule is not sensitive to an agent’s preferences
below the object that it assigns her.
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that for each R′ ∈ P such that R > R′, ϕ(R′) is stable. That is, we may assume that R is

minimal with respect to 6 among preference profiles where ϕ is not stable. Let ν = ϕ(R).

Since ϕ is stable-dominating, there is µ ∈ Σ(R) such that ν Pareto-improves µ. By the

Capacity-based Structure Lemma, ν is non-wasteful and individually rational. Since it is

not stable but Pareto-improves µ, there are o ∈ O and a pair j,k ∈ N such that j �o k and

ν(k) = o Pj ν(j) Rj µ(j). Since µ is stable and Pareto-improved by ν, there is i ∈N such that

i %o j and ν(i) Pi µ(i) = o.

Let R′i ∈ Pi be the truncation of Ri at ν(i) and let ν′ = ϕ(R′i ,R−i). By truncation-

proofness, ν(i) = ν′(i). By individual rationality, ν′(i) R′i ∅. This implies, by truncation

non-bossiness, that ν′ = ν. Since R > (R′i ,Ri), by definition of R, ν is stable at (R′i ,R−i).

However, only i’s preferences are different at R compared to (R′i ,R−i) and i’s preferences

above ν(i) are the same at both profiles. Thus, ν is stable at R, which contradicts the

premise that ϕ is not stable at R.

Note that Propositions 5 and 6 are independent since Pareto-efficiency and truncation

non-bossiness are logically independent.
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