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Abstract

A rule is pairwise strategy-proof if groups of size one and two never have an in-
centive to manipulate. When agents have strict preferences over their own outcomes,
I show that pairwise strategy-proofness even eliminates incentives for any group of
agents to manipulate, therefore implying group strategy-proofness. It is also equiv-
alent to Maskin monotonicity. I obtain the equivalence results assuming preference
domains satisfy a richness condition. Decomposing richness into two parts, I explore
what brings about the equivalence. The results apply to school choice and match-
ing with contracts, indivisible object allocation, and economies with private or public
goods with single-peaked preferences.
JEL Classification: C78, D71, D82
Keywords: pairwise strategy-proofness; group strategy-proofness; Maskin monotonic-
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1 Introduction

As a practical matter in the design of real-world allocation rules, strategy-proofness,
the removal of incentives for individuals to engage in misrepresentation, is an important

desideratum. For one thing, a strategy-proof rule is robust to the mechanism designer’s

assumptions about the informational environment of agents in settings with private val-

ues.1 For another, policy makers can both assess the performance of a strategy-proof

rule with respect to its stated goals, and use the revealed information towards addressing

other policy concerns.2

*I thank Rossella Calvi, Lars Ehlers, Vikram Manjunath, and Utku Ünver for helpful comments and
discussions. All errors are my own.

1Wilson (1987) makes the case for dispensing with strong assumptions about the informational envi-
ronment of agents.

2Some leading studies that make use of data from strategy-proof rules include Abdulkadiroğlu et al.
(2014) and Abdulkadiroğlu et al. (2017).
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A strategy-proof rule also has the desirable feature of “leveling the playing field” be-

tween sincere agents, who in general report truthfully, and sophisticated agents, who

attempt to take advantage of any manipulation opportunities, possibly at the expense of

sincere agents (Pathak and Sönmez, 2008). This property of strategic fairness played a

key role in the adoption of the student-optimal stable rule by the Boston Public Schools

system, to the chagrin of some sophisticated parents who were adept at manipulating the

prior rule.3, 4

Nevertheless, while the student-optimal stable rule, and strategy-proof rules in gen-

eral, are immune to manipulations by individuals, they may still be manipulated by a

group of agents in concert. For instance, two sophisticated parents in Boston might be

able to coordinate a joint manipulation of the student-optimal stable rule to their ben-

efit. Perhaps even larger groups of parents may collude to manipulate the system in

their favor. A designer concerned with eliminating the possibility of all such manipula-

tions should adopt a rule satisfying the stringent incentive requirement of group strategy-
proofness.5 However, requiring immunity to arbitrary group manipulations is overkill if

coordination by large groups is difficult, which is likely the case in many practical appli-

cations such as school choice. The natural first step to addressing concerns about joint

misrepresentations to a strategy-proof rule would be to require immunity to profitable

manipulations by pairs of agents, that is, require pairwise strategy-proofness.6 What is the

scope for designing such rules?

In this paper, I study this question in a framework that accommodates public as well

as private goods, where agents have strict preferences over their own outcomes. My main

contribution (Theorem 1) is to show that a rule designed to eliminate incentives for in-

dividuals and pairs to manipulate succeeds in eliminating such incentives for arbitrary

groups as well, if the possible preferences of agents is sufficiently varied. That is, a pair-

wise strategy-proof rule is actually group strategy-proof. Moreover, these two incentive

3Abdulkadiroğlu and Sönmez (2003) introduce the mechanism design approach to school choice, call
attention to the problems of the original Boston mechanism, and propose and study the student-optimal
stable rule as a possible alternative. See Abdulkadiroğlu et al. (2005) for details on the adaptation of the
student-optimal stable rule for school assignment for the Boston Public Schools system.

4One particular group of sophisticated parents were the West Zone Parents Group in Boston. According
to Pathak and Sönmez (2008), this group would meet prior to the time of admissions to discuss strategies
for preference submission to the old rule. Under the redesigned, strategy-proof rule, these sophisticated
parents cannot gain from individual strategizing.

5A group of agents has an incentive to manipulate if there is a deviating profile of reports for these
agents, keeping non-manipulators reports fixed, such that every agent in this group is weakly better off,
and at least one is strictly better off.

6A pair of agents has an incentive to manipulate if there is a deviating profile of reports for these agents,
keeping non-manipulators reports fixed, such that both agents are weakly better off, and at least one is
strictly better off.
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compatibility properties are equivalent to Maskin monotonicity (Maskin, 1999), a con-

dition on a rule well-known to be necessary for every Nash equilibrium outcome of the

preference-reporting game to coincide with the outcome from truthful reporting.

Theorem 1 has a number of applications. For the problem of school choice, the

student-optimal stable rule is pairwise strategy-proof if and only if the schools’ priorities

satisfy a restrictive acyclicity condition due to Ergin (2002).7 Unfortunately, acyclicity

does not hold for priorities in most applications, and so there is little scope for eliminat-

ing manipulations by pairs of agents while preserving stability. For many well-known

characterizations of indivisible goods allocation rules on the domain of strict prefer-

ences, Theorem 1 implies that the axiom of group strategy-proofness can be replaced

with pairwise strategy-proofness. For instance, Pycia and Ünver (2017) characterize all

group strategy-proof and Pareto efficient rules by what they call trading cycles rules, for

invisible goods allocation with unit demand and supply. Theorem 1 implies that their

characterization holds even if the requirement of group strategy-proofness is weakened

to pairwise strategy-proofness.

I obtain this equivalence theorem assuming that each agent’s domain of possible pref-

erences is rich. This roughly requires that for every pair of possible preferences of an

agent and every pair of outcomes for the agent, there is a preference in the domain that

simultaneously reflects an improvement of the first outcome when judged by the first

preference and an improvement of the second outcome when judged by the second pref-

erence.8 Some examples of rich domains are: a) the set of all strict preferences over

outcomes, a) the set of all strict single-peaked preferences over an exogenous order of

outcomes, a) domains where, for every ordered pair of outcomes, there is preference re-

lation that rank them first and second.

A secondary contribution is to get to root of the equivalence result in Theorem 1 by

studying two novel preference domain conditions I call two-point connectedness and one-
point connectedness. These connectedness requirements on the preference domain are

jointly equivalent to richness. If any one of these two is not satisfied, it is possible to find a

pairwise strategy-proof rule that is not group strategy-proof. Also, Maskin monotonicity

generally does not imply pairwise strategy-proofness without both these requirements.

However, with only two-point connectedness, I show that a pairwise strategy-proof rule

is weakly group strategy-proof (Proposition 5), though the converse is not generally true.9

7Ergin (2002) proves that the student-optimal stable rule is group strategy-proof exactly when this con-
dition is satisfied. That the student-optimal stable rule is the only candidate is due to Alcalde and Barberà
(1994).

8The richness condition is the counterpart to the one in Dasgupta et al. (1979) on domains that also
satisfy the requirement of strict preferences over own outcomes.

9Weak group strategy-proofness is weaker because it only requires immunity to group manipulations
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In addition to economies with discrete private goods, the framework admits those that

allow for public goods as well, including the general social choice (or voting) model. The

assumption of strict preferences over own outcomes requires that an agent is indifferent

between two allocations only if his outcome in each of these allocations is the same. So,

if there are public goods, any change in the public good component must change the

welfare of every agent. For the case of social choice with strict preferences, two-point

connectedness, which is weaker than richness, is sufficient for the three-way equivalence

of strategy-proofness, group strategy-proofness, and Maskin monotonicity (Corollary 2).

A number of interesting subdomains of the single-peaked preference domain are two-

point connected. Some of these have the property that no two admissible preferences have

the same peak (Proposition 10), which makes them rather “small”. Since the smaller the

preference domain, the more powerful is such an equivalence result, Corollary 2 shows

how far the result of Muller and Satterthwaite (1977), that strategy-proofness and Maskin

monotonicity are equivalent when all preferences are admissible, extends.

Related Literature: Serizawa (2006) defines a weakening of pairwise strategy-proofness,

effective pairwise strategy-proofness, which insists on robustness of a pairwise manipula-

tion to a further deviation by one of the manipulators. He shows, inter alia, that effec-

tive pairwise strategy-proofness is equivalent to group strategy-proofness on the classi-

cal preference domain in economies with one public and one private divisible good.10

I contribute to the study of this axiom by examining its implications for private good

economies without transfers and with strict preferences over own outcomes. I estab-

lish that effective pairwise strategy-proofness is equivalent to strategy-proofness and

non-bossiness without any richness requirement, and is equivalent to group strategy-

proofness for rich domains. Serizawa’s result and mine are independent, because his pref-

erence domain allows indifferences but places the restrictions on the upper-level sets.11

There are a number of studies that identify conditions under which strategy-proofness

is equivalent to a group incentive-compatibility requirement. Mostly closely related is the

result of Pápai (2000) that strategy-proofness and group strategy-proofness are equiva-

lent for object allocation with unit demand, when the rule is non-bossy and the domain

comprises all strict preference profiles. The main result in the present paper extends

where every member of the manipulating group is made strictly better off.
10The classical preference domain for this class of economies is the set of preferences that are repre-

sentable by a continuous utility function that is strictly quasiconcave and strictly monotonic on the interior
of R2

+.
11Serizawa (2006) also studies exchange economies and the allotment problem with single-peaked pref-

erences. Effective pairwise strategy-proofness implies group strategyproofness when efficiency is assumed
in the case of exchange economies and unanimity in the case of allotment problems.
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this equivalence to a more general model, while weakening the assumption on the do-

main to that of richness, allowing for novel applications to models with single-peaked

preferences.

Another well-studied group incentive compatibility requirement is that of weak group

strategy-proofness. Barberà and Jackson (1995) show the equivalence of strategy-proofness

and weak group strategy-proofness for non-bossy rules in exchange economies with the

classical preference domain. More recently, Barberà et al. (2016) show such an equiva-

lence for general private good economies. They allow for indifferences but use a stronger

richness condition than the one I employ. Their equivalence result is obtained under two

maintained assumptions on the rule that weaken non-bossiness and Maskin monotonic-

ity. For the social choice setting, Le Breton and Zaporozhets (2009) and Barberà et al.

(2010) furnish other domain conditions that guarantee equivalence between strategy-

proofness and weak group strategy-proofness.

There also exists a literature on the connection between Maskin monotonicity and

group strategy-proofness in settings with private goods. Most closely related is Takamiya

(2007), who shows the equivalence of these two properties in a similar framework to

mine. I improve upon his result by showing equivalence with effective pairwise strategy-

proofness. Klaus and Bochet (2013) study the relation between strategy-proofness and

both Maskin monotonicity and a weaker variant in a similar framework, but allowing

for weak preferences. They introduce a domain condition to obtain equivalence results

between these properties. This condition is neither stronger nor weaker than richness in

this paper, when imposed on domains of strict preferences over own outcomes. More-

over, for certain single-peaked preference domains in the social choice setting, two-point

connectedness is a strictly less restrictive requirement than the condition they introduce.

The rest of the paper is organized as follows. I define the model and properties of

rules in Section 2. I present the main results for pairwise strategy-proofness in Section 3. I

discuss applications of the results in Section 4, and conclude in Section 5. In Appendix A,

I prove results concerning manipulations by groups up to size m ∈ Z+, which generalize

the results in Section 3. In Appendix B, I prove results presented in the body of the paper.

2 Preliminaries

2.1 The Elements of the Model

Let N be a finite and nonempty set of agents. For each i ∈ N , let Xi be a nonempty

set of possible outcomes for i. Let A ⊆ ×i∈NXi be a nonempty set of allocations. Let αi
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denote the outcome for i ∈ N in allocation α ∈ A. An outcome could be a singleton or a

larger set of objects, a social alternative, a coalition of agents that includes i, a contract in

a match involving i, or generally a list of one or more public or private goods, divisible or

indivisible.

Public goods can be modeled because the allocation set A need not be a Cartesian

product of outcomes. For instance, consider an economy with one private good and one

public good, where an allocation is a list (z1, . . . , zN , y), with zi ∈ Zi the private good allot-

ment of agent i ∈ N , and y ∈ Y the level of the public good. Then model the outcome of

agent i by (zi , y), and the set of outcomes for i by Xi = Zi × Y . The set of allocations A is

now a subset of ×i∈N (Zi × Y ), where for every α ∈ A and i, j ∈ N , the Y -component of αi
and αj agree.

Let i ∈ N . Define P̃i to be the set of all linear orderings on the set Xi .12 For any

x,x′ ∈ Xi and Ri ∈ P̃i , x Ri x′ represents that i finds x to be at least as good as x′. Let Pi be

the asymmetric component that represents the strict preference of i, defined as follows:

x Pi x
′ if and only if x Ri x′ and x , x′. Note that Pi uniquely identifies Ri , so I will

interchange references to Pi and Ri .

I assume throughout that preferences of agents over allocations are determined by

their preferences over their component in the allocation, so that for any α,α′ ∈ A, agent

i ∈N prefers α to α′ if and only if he prefers αi to α′i . Abusing notation, let Ri also denote

agent i’s preferences overA.If he is indifferent between allocations α and α′, then it must

be that αi = α′i .
13

For every i ∈ N , call Pi ⊆ P̃i a preference domain for i. Let P̃ = ×i∈N P̃i . Each R ∈ P̃
is a preference profile. Call P ⊆ P̃ a domain of preference profiles. A domain P ⊆ P̃ is

Cartesian if there exists for every i ∈ N a preference domain Pi such that P = ×i∈NPi .
Unless otherwise specified, all preference domains I consider will be Cartesian.

A rule ϕ is a function from P to A. For every R ∈ P and i ∈ N , let ϕi(R) = αi , where

α = ϕ(R).

2.2 Properties of Rules

Given a rule ϕ, a set M ⊆N manipulates ϕ at R ∈ P via R′ ∈ P , if a) for every i ∈N \M,

R′i = Ri , a) for every l ∈M, ϕl(R′) Rl ϕl(R), and a) there exists l ∈M, ϕl(R′) Pl ϕl(R). In this

case, (M,R,R′) is a manipulation of ϕ. Condition a) ensures that the move from profile R

12A linear ordering is a complete, reflexive, transitive, and antisymmetric binary relation.
13To be more precise, in this case Ri is a complete, reflexive, and transitive binary relation, though not

necessarily antisymmetric.
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to R′ only involves a change in the preferences of agents in M.14 Additionally, not every

manipulator needs to be made strictly better off. If ϕl(R′) Pl ϕl(R) for every l ∈M, then

(M,R,R′) is a strong manipulation. A manipulation (M,R,R′) of a rule ϕ is robust if for

every i ∈M and for every R̂i ∈ Pi , ϕi(R′) Ri ϕi(R̂i ,R′−i). A robust manipulation is immune

to a further deviation by individual manipulators, thereby imposing stronger demands

on the group seeking to profitably misrepresent preferences.

A rule ϕ is strategy-proof if there does not exist an agent i ∈N and R,R′ ∈ P such that

({i},R,R′) is a manipulation. It is group strategy-proof if there does not exist a set M ⊆N
and R,R′ ∈ P such that (M,R,R′) is a manipulation. It is weakly group strategy-proof if

there does not exist a setM ⊆N and R,R′ ∈ P such that (M,R,R′) is a strong manipulation.

It is pairwise strategy-proof if there does not exist a set M ⊆ N , |M | ≤ 2, and R,R′ ∈ P
such that (M,R,R′) is a manipulation. It is effectively pairwise strategy-proof (Serizawa,

2006) if there does not exist a robust manipulation (M,R,R′) with |M | ≤ 2.15 This is a

weaker requirement than pairwise strategy-proofness.

Let i ∈ N , x ∈ Xi , and Ri ,R
′
i ∈ P̃i . The preference relation R′i is a monotonic trans-

formation of Ri at x if for every z ∈ Xi , x Ri z implies x R′i z. Denote the set of all

monotonic transformations of Ri at x by MTi(Ri ,x). Clearly, for every x ∈ Xi and Ri ∈ P̃i ,
Ri ∈ MTi(Ri ,x). Let R,R′ ∈ ×i∈N P̃i . Preference profile R′ is a monotonic transformation
of R at allocation α if R′i ∈ MTi(Ri ,αi) for every i ∈ N . A rule ϕ is Maskin monotonic,

i.e. invariant to monotonic transformations, if for every R ∈ P and every R′ ∈ P that is a

monotonic transformation of R at ϕ(R), ϕ(R′) = ϕ(R).

A rule ϕ is non-bossy if for every profile R ∈ P , for every agent i ∈ N , and every

preference relation R̃i ∈ Pi , ϕi(R) = ϕi(R̃i ,R−i) implies ϕ(R) = ϕ(R̃i ,R−i). It is group non-
bossy if for every profile R ∈ P , for every set of agents M ⊆ N , and every preference

profile R̃M ∈ PM , if ϕi(R) = ϕi(R̃M ,R−M) for every i ∈M, then ϕ(R) = ϕ(R̃M ,R−M).16

Each property of interest can be classified as a strategic or an invariance property. The

strategic ones are, in increasing strength, strategy-proofness, effective pairwise strategy-

proofness, pairwise strategy-proofness, and group strategy-proofness. The invariance

ones are non-bossiness, group non-bossiness, and Maskin monotonicity. Group non-

bossiness is stronger than non-bossiness, but in general neither property is implied by

14I use this definition of a manipulation to reduce the notational burden, and it should be understood
that condition a) applies whenever two profiles that constitute a manipulation are referenced.

15Schummer (2000) considers bribe-proofness, the immunity to a particular pairwise manipulation where
an agent pays another to misreport preferences to the benefit of both. While in the spirit of pairwise
strategy-proofness, it is defined for environments with a transferable good with quasilinear preferences,
which I do not consider.

16This generalization of non-bossiness is also studied in Afacan (2012), who shows that group strategy-
proofness implies group non-bossiness in the classic object allocation model.
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or implies Maskin monotonicity.

3 When is manipulation all about the ones and twos?

I introduce two novel domain conditions that feature in the subsequent results relat-

ing various incentive and invariance properties of a rule. I then present the main equiv-

alence theorem (Theorem 1), followed by a series of results relating properties of a rule

that demonstrate the theorem. I discuss applications in the next section. I extend the

analysis to manipulations involving groups of up to size m ∈ Z+ in Appendix A. Proofs

of all the results are in Appendix B.

3.1 Domain conditions

The first domain condition, two-point connectedness, is so-called because it relates

two upper-level sets at two distinct points in the outcome space. A preference domain

Pi ⊆ P̃i for i ∈N is two-point connected if for every α,β ∈ A and for every Ri ,R′i ∈ Pi such

that αi Pi βi , there exists R̂i ∈ Pi such that R̂i ∈ MTi(R′i ,αi) ∩MTi(Ri ,βi). A domain of

preference profiles P is two-point connected if Pi is two-point connected for every i ∈N .

The set of all strict preferences and the set of all strict single-peaked preferences for

a given ordering of discrete outcomes both satisfy two-point connectedness. Unlike the

set of all strict single-peaked preferences, the set of all strict single-dipped preferences

do not satisfy two-point connectedness, except when Remark 1 below applies. Another

example of a two-point connected domain for agent i is one that allows any pair of distinct

outcomes in Xi to occupy the first and second rank under some preference relation, a

strictly stronger requirement. Formally, Pi has unrestricted top pairs if for every distinct

pair x,y ∈ Xi , there exists Ri ∈ Pi such that x Pi y Pi z for every z ∈ Xi \ {x,y}.17

Remark 1. Two-point connectedness is satisfied when the number of outcomes for each agent
does not exceed three: if |Xi | ≤ 3 for agent i, then every Pi ⊆ P̃i is 2-point connected.

The second domain condition is called one-point connectedness, because it relates

two upper-level sets at one point in the outcome space. A preference domain Pi ⊆ P̃i for

i ∈N is one-point connected if for every α ∈ A and for every Ri ,R′i ∈ Pi , there exists R̂ ∈ Pi
such that R̂ ∈ MTi(Ri ,αi) ∩MTi(R′i ,αi). A domain of preference profiles P is one-point
connected if Pi is one-point connected for every i ∈N .

17In fact, such a domain also satisfies one-point connectedness, and hence richness, defined below.
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Many domains satisfy one-point connectedness. A simpler yet stronger requirement

than one-point connectedness is the following: Pi has unrestricted tops if for every x ∈ Xi ,
there exists Ri ∈ Pi such that x Pi z for all z ∈ Xi \ {x}. For example, any subdomain of

the set of all single-peaked preferences on an ordered interval that contains, for every

outcome, some preference with that outcome as peak satisfies one-point connectedness

since it has unrestricted tops. However, the set of strict single-dipped preferences is not

one-point connected except in the uninteresting case when there is at most two possible

outcomes.

Dasgupta et al. (1979) introduce a richness condition for a model with weak prefer-

ences. I define a version that is equivalent to theirs when imposed on any Cartesian

subdomain of P̃ . A preference domain Pi ⊆ P̃i for i ∈ N is rich if for every α,β ∈ A and

for every Ri ,R′i ∈ Pi such that αi Ri βi , there exists R̂i ∈ Pi such that R̂i ∈ MTi(R′i ,αi) ∩
MTi(Ri ,βi). A domain of preference profiles P is rich if Pi is rich for every i ∈N .

Remark 2. The gap between richness and two-point connectedness is exactly given by one-
point connectedness, i.e., a preference domain Pi ⊆ P̃i for i ∈ N is rich if and only if it is both
one- and two-point connected.

A number of interesting domains of preferences satisfy this richness condition. For

example, the set of all possible strict preferences P̃i is a rich domain. Another important

example is the domain of all single-peaked strict preferences on a discrete ordered set.

Remark 3. A Cartesian subdomain of a rich (alternatively, two-point connected) domain may
not be rich (two-point connected).

Richness is a stronger domain condition that two-point connectedness. Some strict

subsets of the set of strict single-peaked preferences satisfy two-point connectedness, but

not richness.18 Section 4 contains an economic application where two-point connected-

ness, but not richness, is satisfied.

Other domain conditions Fleurbaey and Maniquet (1997) define a condition, mono-

tonic closedness, on domains drawn from the set of all weak orders. On subdomains of

P̃ , monotonic closedness is equivalent to two-point connectedness. Condition R1 in Klaus

and Bochet (2013) applied to subdomains from P̃ implies two-point connectedness but

is a more demanding requirement, because it requires that every outcome be top-ranked

under some preference.19 It is not equivalent even when the set of allocations is finite

18For instance, in Example 3, Pi is a domain of strict preferences that are single-peaked over the ordered
set x < y < z and that satisfies two-point connectedness but not richness.

19Since Xi can be infinite, a preference relation Ri need not have a well-defined “best” outcome in Xi .
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(see Example 4, for instance). Condition R1 also implies one-point connectedness unless

there is an always-worst alternative, i.e. if Pi satisfies Condition R1 but not one-point

connectedness, then there exists α ∈ A such that for every β ∈ A and every Ri ∈ Pi , β Ri α.

In fact, there are domains that are rich yet fail to satisfy Condition R1 (Proposition 10).

Barberà et al. (2012) define a condition, intertwinedness, on domains drawn from the set

of all weak orders. Every intertwined subdomain from P̃ is two-point connected. How-

ever, there are two-point connected domains that are not intertwined.20

3.2 Results

The main equivalence result of the paper is the following theorem.

Theorem 1. Let P ⊆ P̃ be a Cartesian domain of preference profiles, and let ϕ be a rule on
P . If P is one-point and two-point connected (i.e. rich), then the following statements are
equivalent:

1. ϕ is effectively pairwise strategy-proof.
2. ϕ is pairwise strategy-proof.
3. ϕ is group strategy-proof.
4. ϕ is strategy-proof and non-bossy.
5. ϕ is strategy-proof and group non-bossy.
6. ϕ is Maskin monotonic.

I will obtain this equivalence result through a series of propositions about various

incentive and invariance properties under increasingly strong domain requirements.

I begin with results for arbitrary Cartesian domains of preference profiles. First, ef-

fective pairwise strategy-proofness is equivalent to the combination of strategy-proofness

and non-bossiness.

Proposition 1. Let P ⊆ P̃ be a Cartesian domain of preference profiles, and let ϕ be a rule on
P . Then the following statements are equivalent:

1. ϕ is effectively pairwise strategy-proof.
2. ϕ is strategy-proof and non-bossy.

Non-bossiness is a commonly used axiom in the analysis of rules, often in conjunction

with strategy-proofness. Its value, in part, stems from technical convenience. However,

20For intertwined domains, these authors show that a weak monotonicity condition together with another
condition called reshuffling invariance is equivalent to strategy-proofness.
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Thomson (2016) criticizes the use of non-bossiness as a strategic property, arguing that it

“makes sense only when imposed on rules that are strategy-proof, in fact pairwise strategy-
proof”. For the class of models I study, this critique can be avoided, since Proposition

1 provides a conceptual foundation for its use: the axiom of effective pairwise strategy-

proofness can always replace the combination of strategy-proofness and non-bossiness.

For object allocation problems with unit demand and the complete domain of strict

preferences P̃ , a well-known equivalence is that of group strategy-proofness with the

combination of strategy-proofness and non-bossiness (Pápai, 2000). However, this equiv-

alence does not hold for arbitrary domains. In fact, effective pairwise strategy-proofness

cannot even be replaced by pairwise strategy-proofness in the statement of Proposition

1, as is clear from Example 1.

Example 1. Let N = {i, j}, Xi = {w,x,y,z}, and Xj = {a,b,c}. Let Pi = {Ri ,R′i} and Pj = {Rj ,R′j}
satisfy:

Ri R′i Rj R′j
w z a c
x y b b
y x c a
z w

Consider the rule ϕ on P defined as follows:

R′j w,c x,b

Rj y,b z,a

ϕ Ri R′i

This rule is effectively pairwise strategy-proof (and even weakly group strategy-proof). How-
ever, ({i, j},R,R′) is a non-robust manipulation, where R = (Ri ,Rj) and R′ = (R′i ,R

′
j). Thus ϕ is

not pairwise strategy-proof.
Note that Pi is not two-point connected — even though x Pi y, there does not exist R̂i ∈ Pi

such that R̂i ∈MTi(Ri , y)∩MTi(R′i ,x).

The next result for arbitrary domains states that effective pairwise strategy-proofness

implies Maskin monotonicity.

Proposition 2. Let P ⊆ P̃ be a Cartesian domain of preference profiles, and let ϕ be a rule on
P . If ϕ is effectively pairwise strategy-proof, then it is Maskin monotonic.21

21Proposition 2 improves upon Theorem 1 in Takamiya (2007), which shows that group strategy-
proofness implies Maskin monotonicity in a model isomorphic to this paper’s. In fact, there is a slight
gap in the proof in Takamiya (2007), because he only proves that group strategy-proofness implies individ-
ual monotonicity (Takamiya, 2001), rather than Maskin monotonicity.
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In light of Propositions 1 and 2, a strategy-proof and non-bossy rule is Maskin mono-

tonic for any domain. The converse of Proposition 2 is not true without both two- and

one-point connectedness, as shown in Example 2.22

Example 2. Let N = {i, j}, Xi = {x,y,z}, and Xj = {a,b,c}. Let Pi = {Ri ,R′i} and Pj = {Rj ,R′j}
satisfy:

Ri R′i Rj R′j
x z a c
y y b b
z x c a

Consider the rule ϕ on P defined as follows:

R′j y,b z,b

Rj y,b y,b

ϕ Ri R′i

The domain is two-point connected (but not one-point connected) and this rule is not effec-
tively pairwise strategy-proof (and fails to be non-bossy) since ({i, j}, (R′i ,Rj),R

′) is a robust
manipulation.

Since for every distinct l, l′ ∈ N , every Rl′ ∈ Pl′ , and every distinct pair Rl ,R′l ∈ Pl , R
′
l <

MT (Rl ,ϕl(Rl ,Rl′ ), the rule ϕ is Maskin monotonic.

Now, I obtain stronger results for domains that satisfy two-point connectedness. The

first result with two-point connectedness is that ruling out robust pairwise manipulations

actually rules out any pairwise manipulation.

Proposition 3. Let P ⊆ P̃ be a Cartesian domain of preference profiles, and let ϕ be a rule on
P . If P is two-point connected, then the following statements are equivalent:

1. ϕ is effectively pairwise strategy-proof.
2. ϕ is pairwise strategy-proof.

However, even if two-point connectedness fails for some agent, if every other agent

has no more than two outcomes, the equivalence in Proposition 3 obtains.

Proposition 4. Suppose the following holds: if there exists i ∈ N such that |Xi | > 3, then for
every j ∈ N \ {i}, |Xj | ≤ 2. Let P = ×i∈NPi be a Cartesian domain of preference profiles. A rule
ϕ on P is effectively pairwise strategy-proof if and only if it is pairwise strategy-proof.

22Two-point connectedness is satisfied in the example, illustrating the need for one-point connectedness
as well. Klaus and Bochet (2013) show the equivalence of Maskin monotonicity with strategy-proofness
and non-bossiness, for domains satisfying their Conditions R1 and R2 (Theorem 3, part (c) in their paper).
As discussed earlier, Condition R1 applied to a strict preference domain with a finite set of alternatives is
neither weaker nor stronger than richness.
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Proposition 4 is tight in the following sense: if there are at least four distinct outcomes

for some agent and at least three distinct outcomes for another, then there exists a rule

that is effectively pairwise strategy-proof but not pairwise strategy-proof. This can be

seen in Example 1, where two-point connectedness does not hold.

Two-point connectedness alone is not sufficient for the equivalence of effectively pair-

wise and group strategy-proofness. This can be seen in Example 3, where Pi and Pj are

two-point connected (but not one-point connected at outcomes y and b, respectively). It

is possible to construct a similar example showing that one-point connectedness by itself

is not sufficient either.

Example 3. Let N = {i, j,k}, Xi = {x,y,z}, Xj = {a,b,c}, and Xk = {u,v}. Let Pi = {Ri ,R′i},
Pj = {Rj ,R′j}, and Pk = {Rk} such that:

Ri R′i Rj R′j Rk
x z a c u
y y b b v
z x c a

Consider the rule ϕ on P defined as follows:

R′j x,c,v y,b,u

Rj y,b,v z,a,v

ϕ : Rk Ri R′i

This rule is pairwise strategy-proof. However, ({i, j,k},R,R′) is a manipulation involving three
agents, where R = (Ri ,Rj ,Rk) and R′ = (R′i ,R

′
j ,Rk), and so is not group strategy-proof.

Note that Pi (and analogously Pj) is two-point connected but not one-point connected —
there does not exist R̂i ∈ Pi such that R̂i ∈MTi(Ri , y)∩MTi(R′i , y).

Even though (effective) pairwise strategy-proofness does not imply group strategy-

proofness when the domain is only two-point connected, it does imply weak group strategy-

proofness.

Proposition 5. Let P ⊆ P̃ be a Cartesian domain of preference profiles, and let ϕ be a rule on
P . Suppose P is two-point connected. If ϕ is (effectively) pairwise strategy-proof, it is weakly
group strategy-proof.

The converse, however, does not hold true. The rule in the following example has

a two-point connected domain and is weakly group strategy-proof but not effectively

pairwise strategy-proof.
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Example 4. Modify the rule ϕ from Example 2 as follows:

R′j x,c y,b

Rj z,b z,a

ϕ Ri R′i

This rule is weakly group strategy-proof, and P is two-point connected by Remark 1. However,
({i, j},R, (R′i ,Rj)) is a robust manipulation, where R = (Ri ,Rj). Thus ϕ is not even effectively
pairwise strategy-proof.

As noted earlier, Example 2 shows that two-point connectedness is not sufficient for

Maskin monotonicity to imply (effective) pairwise strategy-proofness. However, it is suf-

ficient for Maskin monotonicity to imply strategy-proofness.

Proposition 6. Let P ⊆ P̃ be a Cartesian domain of preference profiles, and let ϕ be a rule on
P . Suppose P is two-point connected. If ϕ is Maskin monotonic, then it is strategy-proof.

Example 5 shows that Proposition 6 fails without two-point connectedness.

Example 5. Modify the rule ϕ from Example 1 as follows:

R′j y,b x,b

Rj y,b y,b

ϕ Ri R′i

The domain Pi is not two-point connected, and this ruleϕ is not strategy-proof since ({i}, (Ri ,R′j),R
′)

is an individual manipulation.
Since for every distinct l, l′ ∈ N , every Rl′ ∈ Pl′ , and every distinct pair Rl ,R′l ∈ Pl , R

′
l <

MT (Rl ,ϕl(Rl ,Rl′ ), the rule ϕ is Maskin monotonic.

The final result for two-point connected domains is a counterpart to Proposition 1. It

states the equivalence between group strategy-proofness and the combination of strategy-

proofness and group non-bossiness.

Proposition 7. Let P ⊆ P̃ be a Cartesian domain of preference profiles, and let ϕ be a rule on
P . If P is two-point connected, then the following statements are equivalent:

1. ϕ is group strategy-proof.
2. ϕ is strategy-proof and group non-bossy.
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As I show in Appendix A, non-bossiness and group non-bossiness are generally not

equivalent properties of a rule. Example 1 makes clear that two-point connectedness

cannot be easily dispensed with, since in a two agent economy non-bossiness immediately

implies group non-bossiness.

Finally, I offer two results for one-point connected domains. The first one states that

non-bossiness and group non-bossiness are equivalent properties of a strategy-proof rule

on a one-point connected domain.

Proposition 8. Let P ⊆ P̃ be a Cartesian domain of preference profiles, and let ϕ be a rule
on P . If P is one-point connected and ϕ is strategy-proof, then non-bossiness and group non-
bossiness are equivalent.

The second result states that Maskin monotonicity implies group non-bossiness.

Proposition 9. Let P ⊆ P̃ be a Cartesian domain of preference profiles, and let ϕ be a rule on
P . If P is one-point connected and ϕ is Maskin monotonic, then it is group non-bossy.

Examples 3 and 2 make clear that Propositions 8 and 9, respectively, fail without one-

point connectedness, even given two-point connectedness.

To conclude this section, Theorem 1 is a consequence of Propositions 1 to 8. From

an examination of the proofs it can be seen that, given a particular rule, the two domain

conditions need only hold for those outcomes that are in the range of the rule, and so are

not in a strict sense necessary. Nevertheless, as the examples above make clear, particu-

larly Example 3, it is not possible to significantly weaken the domain requirements and

preserve the equivalence theorem.

4 Applications

Social choice The classic social choice model has a set of social alternatives A, and

agents have strict preferences over these alternatives. This model can be represented

as follows. For every i ∈ N , Xi = A, and A = {(a, . . . , a) ∈ ×i∈NXi : a ∈ A}. Then it must be

that for all i, j ∈N and all α ∈ A, αi = αj .

For such A, note that every rule ϕ : P → A is trivially group non-bossy, since prefer-

ences are strict not only over own outcomes, but also over allocations. Thus, the following

corollary to Proposition 1 is immediate.

Corollary 1. Let P ⊆ P̃ be a Cartesian domain of preference profiles for a social choice model,
and let ϕ be a rule on P . Then the following statements are equivalent:
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1. ϕ is strategy-proof.
2. ϕ is effectively pairwise strategy-proof.

With the assumption of two-point connectedness on the domain, Maskin monotonic-

ity implies strategy-proofness, by Proposition 6, and strategy-proofness implies group

strategy-proofness, by Proposition 7, yielding the following corollary, a counterpart to

Theorem 1 for social choice models. The well-known equivalence of strategy-proofness

and Maskin monotonicity on the entire strict preference domain (Muller and Satterth-

waite, 1977) follows from it.

Corollary 2. Let P ⊆ P̃ be a Cartesian domain of preference profiles for a social choice model,
and let ϕ be a rule on P . If P is two-point connected, then the following statements are equiv-
alent:

1. ϕ is strategy-proof.
2. ϕ is (effectively) pairwise strategy-proof.
3. ϕ is (weakly) group strategy-proof.23

4. ϕ is Maskin monotonic.

The assumption of two-point connectedness is important for the equivalence in Corol-

lary 2. The following simple example shows that its failure allows for rules that are

not group or pairwise strategy-proof, yet effectively pairwise strategy-proof and Maskin

monotonic.

Example 6. LetN = {i, j}, Xi = Xj = {a,b,c,d}, andA = {α,β,δ,γ}, where α = (a,a), β = (b,b),
γ = (c,c), and δ = (d,d). Let Pi = Pj = {R1,R2,R3} satisfy:

R1 R2 R3

a d d
b c b
c b c
d a a

Consider the rule ϕ on P defined as follows:

R3 γ δ δ

R2 γ δ δ

R1 α β β

ϕ R1 R2 R3

23Note that for this model with no private goods and strict preferences, weak group strategy-proofness
is equivalent to group strategy-proofness.
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This rule is strategy-proof (and group non-bossy, and so Maskin monotonic by Propositions
1 and 2).24 However, ({i, j}, (R3,R1), (R1,R3)) is a non-robust manipulation. Thus ϕ is not
pairwise strategy-proof (and hence not group strategy-proof).

Note that Pi is not two-point connected — even though b P 1 c, there does not exist R̂ ∈ Pi
such that R̂ ∈MTi(R1, c)∩MTi(R3,b).

Single-peaked domains Let Ri be a complete, reflexive, and transitive binary relation

on Xi that is not necessarily antisymmetric. Suppose Xi carries a linear order ≤. Prefer-

ence relation Ri is single-peaked (on Xi with linear order ≤) if there exists pi ∈ Xi such that

for every y,z ∈ Xi \ {pi}, a) y ≤ pi or pi ≤ y implies pi Pi y and a) y , z and (z ≤ y ≤ pi or

pi ≤ y ≤ z) implies pi Pi y Pi z. Preference relation Ri in domain P̃i is strict single-peaked
(on Xi with order ≤) if there exists pi ∈ Xi such that for every y,z ∈ Xi \ {pi}, z < y < pi or

pi < y < z implies pi Pi y Pi z. Let P̃i
SP be the set of all strict single-peaked preferences on

(Xi ,≤) from P̃i . Denote the peak of Ri ∈ P̃i
SP by p(Ri).

Group strategy-proofness of well-known rules in settings with single-peaked prefer-

ences also follows from results in this paper. For social choice settings with strict pref-

erences, Corollary 2 shows two-point connectedness of preference domains suffices for

strategy-proofness to imply group strategy-proofness. For the model of Moulin (1980)

with an ordered set of discrete social alternatives, the set of all strict single-peaked pref-

erences is two-point connected (and even rich). Moulin (1980) characterizes the class of

generalized median rules by strategy-proofness, efficiency, and anonymity. By Corollary

2, they are also group strategy-proof. In the case of private goods, consider the divi-

sion problem with single-peaked preferences and a perfectly divisible good. Sprumont

(1991) characterizes the uniform rule by strategy-proofness, efficiency, and anonymity,

and also shows that it is weakly group strategy-proof. Suppose the unit is discretized into

a countable field.25 The set of all strict single-peaked preferences over own outcomes in

an allocation constitute a rich domain. It is straightforward to show that the uniform rule

is non-bossy, and so by Theorem 1 and Proposition 1, it is also group strategy-proof for

the discretized problem. These two results for continuous single-peaked domains have

been established in earlier literature. In particular, Moulin (2017) demonstrates group

strategy-proofness of a large class of rules for one-dimensional settings with continuous

single-peaked preferences that include generalized median rules and the uniform rule.

Instead, a contribution of this paper is to show group strategy-proofness of these familiar

rules is a corollary of a result for a broad class of problems beyond just single-peaked

24It also satisfies unanimity and has full range, but is not dictatorial.
25One could only allow for allocations that divide the good across agents in rational quantities, for in-

stance.
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ones. Moreover, for interesting subdomains of the strict single-peaked domain, defined

next, group strategy-proofness of a rule is no more powerful a requirement than pairwise

strategy-proofness, by Proposition 10 below.

To describe such domains, I first define some terms. Suppose that Xi carries a linear

ordering ≤. Given two elements x,y ∈ Xi , a closed interval from x to y, denoted [x,y], is the

set {z ∈ Xi : x ≤ z ≤ y}. This interval is nonempty if and only if x ≤ y. A closed interval

is non-trivial if it is equivalent to [x,y] for some x,y ∈ Xi satisfying x < y. A set Y ⊆ Xi
is convex if for every x,y ∈ Y , [x,y] ⊆ Y . Given Y ⊆ Xi , define the convex hull of Y as

conv(Y ) =
⋃
x,y∈Y [x,y]. Given convex Z ⊆ Xi , a subset Y of Xi is interval-dense in Z if every

subset of Z that is a non-trivial closed interval contains an element of Y , i.e. for every

x,y ∈ Z, if x < y, then [x,y]∩Y , ∅.
I now describe an economically interesting class of preference domains for social

choice models that satisfy two-point connectedness, but not necessarily richness. A strict

single-peaked preference Ri ∈ P̃i
SP with peak at pi is left-biased if for every y,z ∈ Xi \ {p},

y < p < z implies y Pi z.26 A preference domain Pi ⊆ P̃i
SP is a left-biased strict single-peaked

(LB-SP) domain if it only consists of such preferences.27 Notice that an LB-SP preference

is completely identified by its peak. A domain of LB-SP preferences Pi can be identified

by the set of peaks of preferences in Pi ; denote this set by Πi(Pi). An LB-SP preference do-

main Pi is peak-dense if the set of peaks Πi(Pi) is interval-dense in conv(Π(Pi)). It entails

the following: for any two distinct alternatives in conv(Π(Pi)), there exists some prefer-

ence Ri ∈ Pi that has its peak in between the two alternatives (or is one of the two alter-

natives). An LB-SP preference domain Pi is peak-convex if Π(Pi) = conv(Π(Pi)), i.e. Π(Pi)
is convex. Note that a peak-convex LB-SP domain is peak-dense, but the converse need

not hold if |Xi | ≥ 3. An LB-SP preference domain Pi is essentially complete if Π(Pi) = Xi or

Π(Pi) = Xi \ {x̄}, where x̄ ∈ Xi such that for every y ∈ Xi , y ≤ x̄. Note that an essentially

complete LB-SP domain is peak-convex, but the converse need not hold if |Xi | ≥ 3.

From the following proposition, a two-point connected LB-SP domain is characterized

by peak-denseness, while a rich LB-SP domain is characterized by the stronger condition

of peak-convexity. Interestingly, a one-point connected LB-SP domain is actually rich,

and so two-point connected, as I show in the proof of the proposition. Condition R1 of

Klaus and Bochet (2013) is defined as follows: for every Ri ∈ Pi and x,y ∈ Xi such that

x Pi y, there exists R̂i ∈ Pi such that R̂i ∈ MTi(Ri , y) and x R̂i z for every z ∈ Xi . An LB-

SP domain that satisfies Condition R1 is characterized by the yet stronger requirement

26Right-biased strict single-peaked preferences can be defined analogously.
27Klaus and Bochet (2013) call such preferences “left-right single-peaked”, and offer another economic

example where they arise.
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that the set of peaks contains every alternative in Xi , except possibly the right-most al-

ternative.28 So there are at most two LB-SP domains that satisfy Condition R1: the set of

all LB-SP preferences, and in the case where there is a right-most element, the set of all

LB-SP preferences with a peak other than the right-most element.

Proposition 10. Let Pi be an LB-SP preference domain defined on (Xi ,≤).

1. Domain Pi is two-point connected if and only if it is peak-dense.

2. Domain Pi is rich if and only if it is peak-convex.

3. Let |Xi | ≥ 3. Domain Pi is satisfies Condition R1 if and only if it is essentially complete.

An immediate consequence of Proposition 10 and Corollary 2 is that for every rule

on a peak-dense LB-SP preference domain in a social choice setting, strategy-proofness

is equivalent to Maskin monotonicity (and to group strategy-proofness).29 Consider the

following application of the proposition to a stylized problem of locating a public good

where two-point connectedness, but not richness or Condition R1, is satisfied.

Example 7. A retirement community wishes to organize an evening bingo game. There is a
main road through the community serviced by a bus running a round-trip route that goes from
east to west in the early evening, and returns west to east in the late evening, straddling game
time. The community is divided into alternating blocks of residential and commercial zones.
Citizens, who reside in residential zones, prefer a bus ride to a walk no matter the distances
involved, and holding method of transportation fixed, prefer to spend less time commuting.
The bingo game can be organized in either a residential or a commercial block.30 A citizen’s
preferences over the possible locations for the club are strict single-peaked, with peak at one of
the residential blocks and nearer blocks preferred to farther ones along one of the directions.
Moreover, each block west of home is preferred to each block east of home, since a bus can be
used to get to and from the game in the first, but not the second, case. So, by Proposition 10,
the set of all possible preferences over the location for bingo is a two-point connected domain,
but is not rich (and does not satisfy Condition R1) except in the trivial case where there is only
one residential and one commercial block. Therefore, by Corollary 2, any strategy-proof rule
for this problem is group strategy-proof.

28The right-most alternative of Xi , denoted x̄, must satisfy y ≤ x̄ for every y ∈ Xi . If x̄ exists, it is unique.
29Klaus and Bochet (2013) shows this equivalence only for the domain of all LB-SP preferences.
30This can be formally modeled as follows. Let N be the finite set of citizens, and for each i ∈ N , Xi

is equal to A, the finite set of all blocks on the main road, with order increasing from west to east. For
instance, A could be modeled as a consecutive subset of natural numbers, where odd numbers represent
the residential blocks, and even ones the commercial blocks.
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Indivisible object allocation For the school choice model (Abdulkadiroğlu and Sön-

mez, 2003), the student-optimal stable rule is strategy-proof, but is not generally group

strategy-proof. Pathak and Sönmez (2008) discuss how some parents in Boston organized

meetings to share insight into how to manipulate the original rule used (the so-called

Boston mechanism). While their recommendation of the agent-optimal stable rule re-

moves any individual incentive to misreport preferences, such meetings between parents

raise the possibility of joint manipulations by small groups of parents. A market designer

concerned with manipulations by small groups might naturally seek a rule that is both

stable and pairwise strategy-proof. From Theorem 1, we learn that any such rule is also

group strategy-proof. But a stable rule is group strategy-proof if and only if the priority

structure is acyclic (Ergin, 2002).

Corollary 3. In school choice, a rule is pairwise strategy-proof and stable if and only if it is the
student-optimal stable rule under an Ergin-acyclic priority structure.31, 32

Whenever the student-optimal stable rule is not pairwise strategy-proof, there is a

preference profile at which a pair of agents robustly manipulate it. Since it is weakly

group strategy-proof (Hatfield and Kojima, 2009), at this robust manipulation only one

agent strictly benefits. However, by robustness, neither agent has any reason to deviate

from an agreement to manipulate, so with the possibility of transfers outside the rule,

both agents can be made strictly better off in a robust manner.

For the indivisible object allocation model with unit demand and strict preferences,

Pycia and Ünver (2017) characterize a class of rules they call trading cycles rule by group

strategy-proofness and Pareto-efficiency. Theorem 1 yields the following corollary given

their characterization.33

Corollary 4. In indivisible object allocation with unit demand and supply and strict prefer-
ences, a rule is pairwise strategy-proof and Pareto-efficient if and only if it is a trading cycles
rule.

For the matching with contracts model and its various applications to real-world

mechanism design, agents have strict preferences over contracts involving them.34 If

all unit-demand preferences are allowed, then the richness condition is satisfied, and so

31This also relies on the result that the student-optimal stable rule is the unique strategy-proof and stable
rule (Alcalde and Barberà, 1994).

32Kumano (2009) generalizes the results of Ergin (2002) to the agent-optimal stable rule in a model with
choice functions that are substitutable and acceptant up to a fixed quota. A similar corollary applies to this
rule given his findings.

33A similar corollary can be obtained for the characterization in Pápai (2000).
34See the applications in Sönmez and Switzer (2013) and Sönmez (2013), for instance.
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the results in this paper apply. In particular, the cumulative offer mechanism (Hatfield

and Milgrom, 2005) is pairwise strategy-proof if and only if it is group strategy-proof.35

5 Conclusion

In this paper, I have demonstrated that the combination of two-point and one-point

connectedness of the preference domain, satisfied by a number of interesting problems,

renders any rule that is immune to pairwise manipulations also immune to arbitrary

group manipulations. On one hand, the task of identifying whether a rule has a manipu-

lation involving more than one agent is made simpler, since only pairwise manipulations

need to be checked. On the other hand, to the extent that group strategy-proofness is

difficult to obtain, I offer a more negative assessment: even a slight strengthening of

strategy-proofness to pairwise strategy-proofness leads to the same difficulty on such do-

mains.

Going beyond manipulating pairs, I study manipulation by groups up to a fixed size

m ∈ Z+ in Appendix A. The counterpart to pairwise strategy-proofness is m-strategy-

proofness, the immunity to manipulations up to size m.36 When the duo of domain

conditions is satisfied, this hierarchy of strategy-proofness conditions amounts to pair-

wise strategy-proofness, leaving only individual strategy-proofness distinct. There are

two notable results when one or both conditions fails to hold. The first, requiring two-

point connectedness, is a version of Proposition 7 with the group size bounded bym. The

second is the connection between manipulations and robust manipulations in general. If

all manipulations of up to size m are precluded, then no robust manipulation by m + 1

agents is possible either.

The framework accommodates many well-known models, such as discrete goods al-

location with or without priorities, and voting models on a discrete space of ordered

alternatives with single-peaked preferences. A limitation of the framework, however,

is that preferences over own outcomes must be strict, which rules out problems where

agents have continuous preferences over divisible goods. Recently, Barberà et al. (2016)

have studied conditions under which strategy-proofness implies weak group strategy-

proofness in such a setting. The relationship between manipulability by small groups

and that by larger groups when there may be indifferences in outcomes and only some

manipulators need to be made strictly better off remains to be thoroughly examined.

35I am not aware of a study on the question of group strategy-proofness of the cumulative offer mecha-
nism. On weak group strategy-proofness, Hatfield and Kojima (2009) identify some sufficient conditions.

36I similarly parametrize effective pairwise strategy-proofness, non-bossiness, and Maskin monotonicity,
and study their relations with each other for fixed values of m.
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A Eliminating manipulations by groups of size m

I begin by generalizing previous definitions for groups of size m ∈Z+.

A rule ϕ is m-strategy-proof if there does not exist a set M ⊆ N , |M | ≤ m ∈ Z+, and

R,R′ ∈ P such that (M,R,R′) is a manipulation. A rule ϕ is effectively m-strategy-proof
if there does not exist a robust manipulation (M,R,R′) with |M | ≤ m ∈ Z+. A rule ϕ is

m-non-bossy if for every profile R ∈ P , for every set of agents M ⊆ N with |M | ≤ m ∈ Z+,

and every preference profile R̃M ∈ PM , if ϕi(R) = ϕi(R̃M ,R−M) for every i ∈M, then ϕ(R) =

ϕ(R̃M ,R−M). A rule ϕ is m-monotonic if for every R ∈ P , every M ⊆N with |M | ≤m ∈Z+,

and every R′M ∈ PM , if R′i monotonic transformation of Ri at ϕi(R) for every i ∈M, then

ϕM(R′) = ϕM(R). If m = 1 in this definition, the ϕ is individually monotonic.

For what follows, suppose ϕ is a rule defined on a Cartesian domain P ⊆ P̃ , and

suppose m ∈Z+.

The following two lemmas will prove useful in the subsequent proofs. Takamiya

(2001) proves the first one for a special case of my framework, and Klaus and Bochet

(2013) prove both for a more general domain of preferences that allows some indiffer-

ences (their Condition R2). I include proofs for the sake of completeness.

Lemma 1 (Monotonicity Lemma). If ϕ is strategy-proof, then it is individually monotonic.

Proof. Let R ∈ P and i ∈ N , and suppose R̂i ∈ Pi is a monotonic transformation of Ri at

ϕi(R). By strategy-proofness, ϕi(R) Ri ϕi(R̂i ,R−i). Then, by the definition of a monotonic

transformation, ϕi(R) R̂i ϕi(R̂i ,R−i). By strategy-proofness, ϕi(R̂i ,R−i) R̂i ϕi(R). Thus,

ϕi(R̂i ,R−i) Îi ϕ(R). By strict preferences, ϕi(R̂i ,R−i) = ϕi(R).

Lemma 2. Let P be two-point connected. If ϕ is individually monotonic, then it is strategy-
proof.

Proof. Suppose ϕ is individually monotonic but not strategy-proof. I will obtain a con-

tradiction. Since ϕ is not strategy-proof, there exists i ∈ N such that ({i},R,R′) is a ma-

nipulation for some R,R′ ∈ P . Then ϕi(R′) Pi ϕi(R). By two-point connectedness, there

exists R̂i ∈ P such that R̂i ∈MTi(Ri ,ϕi(R))∩MTi(R′i ,ϕi(R
′
i)). By individual monotonicity,

ϕi(R̂i ,R′−i) = ϕi(R′) and ϕi(R̂i ,R−i) = ϕi(R). Thus, ϕi(R′) = ϕi(R), a contradiction.

Lemma 3. If ϕ is individually monotonic and non-bossy, then it is Maskin monotonic.

Proof. Let R ∈ P and let R̂ ∈ P be a monotonic transformation of R at ϕ(R). Then, for each

k ∈ N , R̂k is a monotonic transformation of Rk at ϕk(R). Identify each agent in N with

an integer in {1, . . . , |N |}. For each k ∈ {1, . . . , |N |}, define R̂≤k = (R̂1, . . . , R̂k ,Rk+1, . . . ,R|N |).
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Identify R̂≤0 with R, and notice that R̂≤|N | = R̂. Since P is a Cartesian product, R,R̂ ∈ P
implies R̂≤k ∈ P for every k ∈ {1, . . . , |N |}.

I will show ϕ(R̂) = ϕ(R) by induction on the sequence of profiles (R̂≤k)k=|N |
k=0 . Triv-

ially, ϕ(R̂≤0) = ϕ(R), establishing the base case. Now, suppose ϕ(R̂≤k−1) = ϕ(R), where

k ∈ {1, . . . , |N | − 1}. By individual monotonicity, ϕk(R̂≤k) = ϕk(R̂≤k−1). By non-bossiness,

ϕ(R̂≤k) = ϕ(R̂≤k−1). Thus, ϕ(R̂≤k) = ϕ(R), completing the induction step.

Lemma 4. Let m ≥ 1. If ϕ is (m+ 1)-strategy-proof, then it is m-non-bossy.

Proof. Let S ⊆ N such that 0 < |S | ≤ m. Let R,R′ ∈ P be preference profiles such that

R′−S = R−S and such that for every i ∈ S, ϕi(R′) = ϕi(R).

Suppose there exists j ∈ N \ S such that ϕj(R′) , ϕj(R). Since preferences are strict,

either ϕj(R′) Pj ϕ(R) or ϕj(R) Pj ϕ(R′). In the former case, (S ∪ {j},R,R′) constitutes a

manipulation, while in the latter case, (S ∪ {j},R′,R) constitutes a manipulation. In both

cases, |S ∪ {j}| ≤m+ 1, contradicting the assumption that ϕ is m+ 1-strategy-proof.

Note that the group manipulation in Example 3 is not robust. The following lemma

shows that this is not a coincidence. Robust manipulations of a particular size require the

existence of a possibly non-robust manipulation with one less agent.

Lemma 5. Let m ≥ 1. If ϕ is m-strategy-proof and non-bossy, then it is effectively (m + 1)-
strategy-proof.

Proof. Let (M,R,R′) be a robust manipulation of ϕ, with |M | ≤ m + 1. By m-strategy-

proofness, |M | > m, so |M | =m+ 1. I will prove the lemma by contradiction.

There exists i ∈M such that R′i , Ri . By strategy-proofness, ϕi(Ri ,R′−i) Ri ϕi(R
′), but

by robustness, ϕi(R′) Ri ϕi(Ri ,R′−i), so by strict preferences, ϕi(Ri ,R′−i) = ϕi(R′). Non-

bossiness implies ϕ(Ri ,R′−i) = ϕ(R′). Now, suppose there exists j ∈ M \ {i} such that

ϕj(R′) Pj ϕj(R). Then, since ϕ(Ri ,R′−i) = ϕ(R′), (M \{i},R, (Ri ,R′−i)) constitutes a manipula-

tion of ϕ bym agents, contradictingm-strategy-proofness. Thus, given strict preferences,

for every j ∈M \ {i}, ϕj(R′) = ϕj(R), and ϕi(R′) Pi ϕi(R).

The argument in the second paragraph applies for every agent k ∈M such that R′k ,

Rk. Therefore, to avoid a contradiction, there can be only one agent i ∈ M such that

R′i , Ri , implying R′ = (R′i ,R−i) and for this agent ϕi(R′) Pi ϕi(R). But then ({i},R,R′) is a

manipulation by agent i, contradicting strategy-proofness.

Corollary 5. Let m ≥ 2. If ϕ is m-strategy-proof, then it is effectively (m+ 1)-strategy-proof.

Proof. For m ≥ 2, m-strategy-proofness implies non-bossiness, by Lemma 4. Thus, the

result follows by Lemma 5.
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The rule in Example 3 is on a two-point connected domain and is effectively 3-strategy-

proof and even weakly group strategy-proof. However, it is not 3-strategy-proof (and also

fails to be 2-non-bossy).

The following lemma makes clear why, in Proposition 7, group non-bossiness on the

rule can take the place of one-point connectedness on the domain.

Lemma 6. Let P be one-point connected and let m ≥ 1. If ϕ is individually monotonic and
non-bossy, then it is m-non-bossy.

Proof. I will prove this by induction. The case for m = 1 is trivial, so suppose m > 1. Now

suppose for every m′ < m, ϕ is m′-non-bossy.

Let S ⊆ N such that |S | = m. Let R,R′ ∈ P be preference profiles such that R′−S = R−S
and such that for every i ∈ S, ϕi(R′) = ϕi(R).

Let i ∈ S. By one-point connectedness, there exists R̂i ∈ Pi such that R̂i ∈MTi(Ri ,ϕi(R)) ∩
MTi(R′i ,ϕi(R)). By individual monotonicity, ϕi(R̂i ,R−i) = ϕi(R) and ϕi(R̂i ,R′−i) = ϕi(R′).

Then, by non-bossiness, ϕ(R̂i ,R−i) = ϕ(R) andϕ(R̂i ,R′−i) = ϕ(R′), and so for every j ∈ S\{i},
ϕj(R̂i ,R−i) = ϕj(R̂i ,R′−i). By the induction hypothesis, ϕ is (m − 1)-non-bossy. Thus,

ϕ(R̂i ,R−i) = ϕ(R̂i ,R′−i), and so ϕ(R) = ϕ(R′), concluding the induction step.

Lemma 7. Let P be one-point connected, and let m ≥ 2. If ϕ is m-monotonic, then it is non-
bossy.

Proof. Let R ∈ P , i ∈ N , and R′i ∈ Pi such that ϕi(R′i ,R−i) = ϕi(R). By one-point con-

nectedness, there exists R̂i ∈ Pi such that R̂i ∈MTi(Ri ,ϕi(R)) ∩MTi(R′i ,ϕi(R)). For every

j ∈ N \ {i}, (R̂i ,R−i) is a {i, j}-monotonic transformation of both R and (R′i ,R−i) at ϕ(R).

Sincem ≥ 2, ϕj(R̂i ,R−i) = ϕj(R) and ϕj(R̂i ,R−i) = ϕj(R′i ,R−i), bym-monotonicity. Thus, for

every l ∈N , ϕl(R′i ,R−i) = ϕl(R), i.e., ϕ is non-bossy.

Lemma 8. Let P be two-point connected and m ≥ 1. If ϕ is strategy-proof and non-bossy, then
it is weakly m-strategy-proof.

Proof. Let (M,R,R′) be a strong manipulation, i.e. for every i ∈ M, ϕi(R′) Pi ϕi(R). I

prove the lemma by induction. The case of m = 1 is trivial, so suppose there is no strong

manipulation of size m′ < m, where m > 1. Then for every i ∈ M, R′i , Ri . Take some

i ∈M. By two-point connected, there exists R̂i ∈MTi(Ri ,ϕi(R))∩MTi(R′i ,ϕi(R
′)). By the

monotonicity lemma (Lemma 1), ϕi(R̂i ,R−i) = ϕi(R) and ϕi(R̂i ,R′−i) = ϕi(R′). By non-

bossiness, ϕ(R̂i ,R−i) = ϕ(R) and ϕ(R̂i ,R′−i) = ϕ(R′). Thus, (M \ {i}, (R̂i ,R−i), (R̂i ,R′−i)) is a

strong manipulation by m− 1 agents, a contradiction.

Proposition 11. Let P be two-point connected and m ≥ 0. If ϕ is strategy-proof and m-non-
bossy, then it is (m+ 1)-strategy-proof.
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Proof. I prove the result using an induction argument overm. The statement to be proved

is trivially true for the case of m = 0, so suppose m > 0. Since ϕ is m-non-bossy, it is m′-

non-bossy for every m′ < m, and so by the induction hypothesis and strategy-proofness,

ϕ is m-strategy-proof.

To demonstrate m + 1-strategy-proofness, suppose for the sake of contradiction that

(M,R,R′) is a manipulation by m+ 1 agents, i.e. |M | =m+ 1.

First, no manipulator strict improves while also misreporting his preferences. To see

this, suppose to the contrary that such a manipulator i ∈M exists, i.e. R′i , Ri andϕi(R′) Pi
ϕi(R). By two-point connectedness, there exists R̂i ∈ MTi(Ri ,ϕi(R)) ∩ MTi(R′i ,ϕi(R

′)).

By the monotonicity lemma (Lemma 1) and strict preferences, ϕi(R̂i ,R−i) = ϕi(R) and

ϕi(R̂i ,R′−i) = ϕi(R′). By non-bossiness, ϕ(R̂i ,R−i) = ϕ(R) and ϕ(R̂i ,R′−i) = ϕ(R′). Thus,

(M, (R̂i ,R−i), (R̂i ,R′−i)) is a manipulation by the same m + 1 agents with the same pattern

of welfare improvements for manipulators, albeit one where agent i strictly improves

without misreporting his preferences. Since m > 0, there is at least one other agent in

M. Suppose another manipulator j ∈ M \ {i} also strict benefits from the manipula-

tion (M, (R̂i ,R−i), (R̂i ,R′−i)), i.e. ϕj(R̂i ,R′−i) Pj ϕj(R̂i ,R−i). Then (M \ {i}, (R̂i ,R−i), (R̂i ,R′−i))
is also a manipulation, but by m agents, which contradicts m-strategy-proofness. So,

no manipulator other than i strictly improves through that manipulation, i.e. for every

j ∈ M \ {i}, ϕj(R̂i ,R−i) Ij ϕj(R̂i ,R′−i). By strict preferences, ϕj(R̂i ,R−i) = ϕj(R̂i ,R′−i). This

in turn implies ϕ(R̂i ,R−i) = ϕ(R̂i ,R′−i), since ϕ is m-non-bossy, |M \ {i}| = m, and R′k = Rk
for every k ∈ N \M. But then agent i does not strictly improve through the manipu-

lation (M, (R̂i ,R−i), (R̂i ,R′−i)), contradicting a previous claim. Thus, it must be that any

manipulator i ∈ M who strictly improves in manipulation (M,R,R′) does not misreport

his preferences, i.e. ϕi(R′) Pi ϕi(R) implies R′i = Ri .

Second, there is no more than one manipulator who strictly improves in the manip-

ulation (M,R,R′). To see this, suppose to the contrary that there exist distinct i, j ∈ M
such that ϕi(R′) Pi ϕi(R) and ϕj(R′) Pj ϕj(R). Having already established that strict im-

provement for a manipulator implies no preference misrepresentation, R′j = Rj , it must

be that (M \ {j},R,R′) is also be a manipulation, but by m agents. But this contradicts

m-strategy-proofness.

Thus, the manipulation (M,R,R′) has exactly one agent i ∈ M who strictly improves

from the manipulation, while every other agent j ∈M \ {i} is indifferent to the manipula-

tion, and moreover, i does not misrepresent his preferences. That is, R′ = (R′M\{i},Ri ,R−M)

and ϕj(R′) Ij ϕj(R), the latter of which implies ϕj(R′) = ϕ(R), by strict preferences. Then,

by m-non-bossiness, ϕ(R) = ϕ(R′M\{i},Ri ,R−M) = ϕ(R′), contradicting the claim that i

strictly improves, and concluding the proof of the induction step.
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B Proofs omitted from body

The proofs here rely upon the results on general manipulations in Appendix A.

Proof of Proposition 1. First, I show that an effectively pairwise strategy-proof rule is non-

bossy. Strategy-proofness is of course obvious by definition. Let i ∈ N , R,R′ ∈ P , where

R′j = Rj for every j ∈ N \ {i}. Suppose ϕi(R) = ϕi(R′). This implies that ϕi(R′) Ri ϕi(R)

and ϕi(R) R′i ϕi(R
′). Let j ∈ N \ {i}. By effective pairwise strategy-proofness, ({i, j},R,R′)

is not a robust manipulation. Since ϕi(R′) Ri ϕi(R), it must be that ϕj(R) Rj ϕj(R′). Also

by effective pairwise strategy-proofness, ({i, j},R′,R) is not a robust manipulation. Since

ϕi(R) R′i ϕi(R
′) and given that R′j = Rj , it must be that ϕj(R′) Rj ϕj(R). Thus, ϕj(R) Ij

ϕj(R′). Since Rj is antisymmetric, ϕj(R) = ϕj(R′).

For the other direction, the result follows from Lemma 5.

Proof of Proposition 2. By Lemma 1, strategy-proofness implies individual monotonicity

(see Appendix A for the definition of this). Then the result follows from Proposition 1,

which implies non-bossiness, and Lemma 3.

Proof of Proposition 3. Follows from the more general result of Proposition 11 in Ap-

pendix A, together with Proposition 1.

Proof of Proposition 4. One direction is immediate.

As for the converse, given Proposition 1, if there is a non-robust pairwise manipula-

tion both manipulating agents change their reports, though only one of them need strictly

benefit from the manipulation. Otherwise non-bossiness would fail. However, each agent

would strictly benefit by deviating from the manipulation and reporting his true prefer-

ence, and each agent would be strictly worse off if his co-manipulator were to deviate

from the agreed manipulation by reporting instead his true preference. This argument

requires that at least four outcomes exist for one of the agents, and three outcomes for

the other. So if there are no more than three distinct outcomes for every agent, or if

every agent but one has no more than two distinct outcomes, effective pairwise strategy-

proofness implies pairwise strategy-proofness, completing the proof.

Proof of Proposition 5. By two-point connectedness and Propositions 1 and 3, pairwise

strategy-proofness implies non-bossiness (and strategy-proofness). Then Lemma 8 com-

pletes the proof.

Proof of Proposition 6. By definition, Maskin monotonicity implies individual monotonic-

ity (see Appendix A for the definition of this). The result follows by two-point connect-

edness and Lemma 2.
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Proof of Proposition 7. Follows from the more general result of Proposition 11 in Ap-

pendix A.

Proof of Proposition 8. Follows from the more general result of Lemma 6.

Proof of Proposition 9. Follows from the combination of Lemma 6 and Lemma 7.

Proof of Theorem 1. By Remark 2, the combination of one- and two-point connectedness

is equivalent to richness.

First, I show that statements 1), 4), 5), and 6) are equivalent. By definition, statement

5) implies 4). By Proposition 1, statement 4) is equivalent to statement 1). By Proposi-

tion 2, statement 1) implies 6). By Proposition 6 and two-point connectedness, Maskin

monotonicity implies strategy-proofness. By Proposition 9 and one-point connectedness,

Maskin monotonicity implies group non-bossiness. Thus, statement 6) implies 5).

Next, I show that statements 1), 2), 3), and 5) are equivalent. By definition, statement

3) implies 2), which in turn implies 1). From above, statement 1) is equivalent to 5). By

Proposition 7 and two-point connectedness, statement 5) is equivalent to 3).

Proof of Proposition 10. Let Pi be an LB-SP preference domain. I begin with the following

claim, the straightforward proof of which I omit.

Claim 1: Let Ri , R̂i ∈ Pi and x ∈ Xi .

(a) If p(Ri) < x, then R̂i ∈MTi(Ri ,x) if and only if p(R̂i) ≤ x.

(b) If x ≤ p(Ri), then R̂i ∈MTi(Ri ,x) if and only if p(R̂i) ∈ [x,p(Ri)].

Repeated application of Claim 1 yields the following claim, the proof of which I omit.

Claim 2: Let Ri ,R′i , R̂i ∈ Pi and x,y ∈ Xi , where x Pi y.

(a) If p(Ri) < y and p(R′i) < x, then R̂i ∈ MTi(Ri , y) ∩MTi(R′i ,x) if and only if p(R̂i) ≤
min{x,y}.

(b) If p(Ri) < y and x ≤ p(R′i), then R̂i ∈ MTi(Ri , y) ∩MTi(R′i ,x) if and only if p(R̂i) ∈
[x,min{y,p(R′i)}].

(c) If y < p(Ri) and p(R′i) < x, then R̂i ∈MTi(Ri , y)∩MTi(R′i ,x) if and only if p(R̂i) ∈ [y,x].

(d) If y < p(Ri) and x ≤ p(R′i), then R̂i ∈ MTi(Ri , y) ∩MTi(R′i ,x) if and only if p(R̂i) ∈
[x,min{p(Ri),p(R′i)}].

With Claim 2, I show that an LB-SP domain Pi is two-point connected if and only if it

is peak-dense.

(Two-point connected implies peak-dense) Let [x,y] ⊆ conv(Π(Pi)), where x < y. By

definition of the convex hull, there exist Ri ,R′i ∈ Pi such that p(Ri) ≤ x < y ≤ p(R′i),
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without loss of generality. Now, p(Ri) ≤ x < y implies xPiy. By two-point connected-

ness, there exists R̂i ∈ Pi such that R̂i ∈ MTi(Ri , y) ∩MTi(R′i ,x). Then by Claim 2(b),

p(R̂i) ∈ [x,min{y,p(R′i)}] = [x,y]. Since x and y are arbitrary, Pi is peak-dense.

(Peak-dense implies two-point connected) Let Ri ,R′i ∈ Pi , and x,y ∈ Xi such that x Pi y.

Note that p(Ri) , y. I show that there exists R̂i ∈ Pi such that R̂i ∈MTi(Ri , y)∩MTi(R′i ,x),

by considering four cases.

Case (a): p(Ri) < y and p(R′i) < x: Let R̂i = R′i ∈ Pi . Then R̂i ∈MTi(Ri , y)∩MTi(R′i ,x), by Claim

2(a), since p(R̂i) = p(R′i) ≤ x.

Case (b): p(Ri) < y and x ≤ p(R′i): Note that x < y, since x Pi y. If x ≤ p(Ri), then let R̂i = Ri .

Since p(R̂i) = p(Ri) ∈ [x,y], by Claim 2(b), R̂i ∈ MTi(Ri , y)∩MTi(R′i ,x). Otherwise,

p(Ri) < x. If p(R′i) = x, then let R̂i = R′i , so that p(R̂i) = x. Instead, if x < p(R′i),

then [x,min{y,p(R′i)}] is a non-trivial closed interval of conv(Π(Pi)). Since Pi is peak-

dense, there exists R̂i ∈ Pi such that p(R̂i) ∈ [x,min{y,p(R′i)}]. In either case, by Claim

2(b), R̂i ∈MTi(Ri , y)∩MTi(R′i ,x).

Case (c): y < p(Ri) and p(R′i) < x: Note that x ∈ [y,p(Ri)], since x Pi y. Then, p(R′i) < x ≤ p(Ri),

so [max{y,p(R′i)},min{p(Ri),x}] is a non-trivial closed interval of conv(Π(Pi)). Since

Pi is peak-dense, there exists R̂i ∈ Pi such that p(R̂i) ∈ [max{y,p(R′i)},min{p(Ri),x}] ⊆
[y,x]. So, by Claim 2(c), R̂i ∈MTi(Ri , y)∩MTi(R′i ,x).

Case (d): y < p(Ri) and x ≤ p(R′i): Note that x ∈ [y,p(Ri)], since x Pi y. Let R̂i = Ri if p(Ri) ≤
p(R′i) and R̂i = R′i otherwise. Then, p(R̂i) = min{p(Ri),p(R′i)} ∈ [x,min{p(Ri),p(R′i)}].
So, by Claim 2(d), R̂i ∈MTi(Ri , y)∩MTi(R′i ,x).

Next, I show that an LB-SP domain Pi is one-point connected if and only if it is peak-

convex. Since a peak-convex Pi is peak-dense, it is also two-point connected, from above.

Also, a rich LB-SP domain is one-point connected. Thus, an LB-SP domain is rich if and

only if it is peak-convex.

(One-point connected implies peak-convex) Let x ∈ conv(Π(Pi)). By definition of the

convex hull, there exists Ri ,R′i ∈ Pi such that p(Ri) ≤ x ≤ p(R′i), without loss of generality.

By one-point connectedness, there exists R̂i ∈ Pi such that R̂i ∈MTi(Ri ,x)∩MTi(R′i ,x). By

Claim 1, p(R̂i) ≤ x and p(R̂i) ∈ [x,p(R′i)], so p(R̂i) = x. Since x is arbitrary, conv(Π(Pi)) =

Π(Pi).
(Peak-convex implies one-point connected) Let Ri ,R′i ∈ Pi and x ∈ Xi . Suppose p(Ri) ≤

p(R′i), without loss of generality. If x ∈ [p(Ri),p(R′i)], then by peak-convexity there exists

R̂i ∈ Pi such that p(R̂i) = x. Then it follows from Claim 1 that R̂i ∈MTi(Ri ,x)∩MTi(R′i ,x).

If x ≤ p(Ri), let R̂i = Ri ∈ Pi . Then x ≤ p(R̂i) = p(Ri) ≤ p(R′i), so by Claim 1, R̂i ∈MTi(Ri ,x)∩
MTi(R′i ,x). Finally, if p(R′i) ≤ x, let R̂i = R′i ∈ Pi . Then p(Ri) ≤ p(R′i) = p(R̂i) ≤ x, so by Claim

1, R̂i ∈MTi(Ri ,x)∩MTi(R′i ,x).
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Finally, I show that an LB-SP domain Pi satisfies Condition R1 if and only if it is

essentially complete.

Π(Pi) = Xi or Π(Pi) = Xi \ {x̄}, where x̄ ∈ Xi satisfies y ≤ x̄ for every y ∈ Xi .
(Condition R1 implies essentially complete) Let x,y ∈ Xi such that x < y and suppose

Ri ∈ Pi such that p(Ri) < y. Then since Ri is LB-SP, x Pi y, so by Condition R1, there

exists R̂i ∈ Pi such that p(R̂i) = x and R̂i ∈ MTi(Ri , y). Thus, when there exists Ri ∈ Pi
such that p(Ri) is not the right-most alternative, x ∈ Π(Pi) for every x ∈ Xi such that x is

not the right-most alternative. Instead, suppose Ri ∈ Pi such that p(Ri) is the right-most

alternative. Since |Xi | ≥ 3, there exist x,y ∈ Xi such that x < y < p(Ri). Then since Ri is

single-peaked, y Pi x, so by Condition R1, there exists R̂i ∈ Pi such that p(R̂i) = y and

R̂i ∈ MTi(Ri ,x). Thus, y ∈ Π(Pi) for every y ∈ Xi such that there exists x ∈ Xi such that

x < y. Putting it together, if |Xi | ≥ 3, then x ∈ Xi and x <Π(Pi) implies x is the right-most

alternative.

(Essentially complete implies Condition R1) Let Ri ∈ Pi and x,y ∈ Xi such that x Pi y. I

will show that there exists R̂i ∈ Pi such that p(R̂i) = x and R̂i ∈MTi(Ri , y). Since x Pi y, note

that x < y if and only if p(Ri) < y, by definition of LB-SP preferences. Suppose x is not

the right-most alternative. Then p(Ri) < y. Since Pi is essentially complete, there exists

R̂i ∈ Pi such that p(R̂i) = x < y. Then by Claim 1(a), R̂i ∈ MTi(Ri , y). Instead, suppose x

is the right-most alternative. In this case, by the definition of LB-SP preferences, it must

be that p(Ri) = x. Letting R̂i = Ri ∈ Pi , it is clear that p(R̂i) = x and R̂i ∈MTi(Ri , y). Thus,

Condition R1 is satisfied.
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