
The Impossibility of Strategy-proof, Pareto efficient,
and Individually Rational Rules for Fractional Matching∗

Samson Alva
University of Texas at San Antonio

samson.alva@gmail.com

Vikram Manjunath
University of Ottawa

vikram@dosamobile.com

June 7, 2019

Abstract

For a model of fractional matching, interpreted as probabilistic matching, together
with the allocation of non-negative amounts of money, we show that strategy-proofness,
ex post Pareto efficiency of the matching, and a weak version of ex ante individual
rationality are incompatible when each agent’s utility is a linear function of both their
fractional assignment and money. We identify some avenues to escape this impossibility.
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1 Introduction

We study the problem of fractionally matching agents to each other alongside the allotment
of a single divisible good (Roth et al., 1993; Manjunath, 2016). Normalizing the total avail-
ability of each agent to one, we interpret a fractional matching as a lottery over deterministic
matchings. Each agent’s preference is quasilinear over fractional matchings and the divisible
“money” good. Given the lottery interpretation, we focus on expected utility preferences
over fractional matchings. In particular, we assume that each agent seeks to maximizes their
expected utility, and that their Bernoulli utility is distinct across potential partners.1 Each
agent, therefore, has a strict preference over potential partners and remaining alone that is
invariant to the amount of money they consume. We may make our judgements in regards
to properties of allocations either before or after the lottery over matchings is conducted.
∗We thank William Thomson for helpful comments. We are also grateful for the useful comments and

suggestions by the editor and two anonymous reviewers.
1 We have chosen to use singular “they/them” as a gender-neutral pronoun in what follows.
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In what follows, we use the terms ex ante and ex post in reference to the stages before and
after the resolution of the lottery, rather than before and after agents learn about the state
of the world as in the Bayesian mechanism design literature.2

The objects of our study are rules that choose allocations as a function of agents’ pref-
erences. An allocation consists of two parts: a lottery over deterministic matchings of the
agents and a distribution of the available amount of money in the economy. We assume
non-negativity of money consumption: feasibility requires that no agent consumes a nega-
tive amount of money.3 We show that no strategy-proof4 rule is ex post Pareto efficient in
matching5 and ex ante individually rational.6

For the deterministic marriage (and roommate) problem without money (Gale and Shap-
ley, 1962), no individually rational and Pareto efficient rule is strategy-proof (Alcalde and
Barberà, 1994; Sönmez, 1999). Such a problem can be represented as a fractional matching
problem where the amount of money to divide is zero, allocations are deterministic, and
preferences over partners are strict and have a linear utility representation.7 Our impossi-
bility result may be seen as strengthening the classic impossibility in two ways. First, we
show that the availability of money does not alleviate the impossibility. Second, we drop
the requirements that the rule be deterministic and use only ordinal preference information,
and considerably weaken individual rationality. While we have assumed that all preferences
with strict orderings over partners are available, our proof technique only requires that it be
possible for each agent to have two indifference classes among acceptable partners. However,
if agents are indifferent between all acceptable partners, that is if preferences are dichoto-
mous, then strategy-proofness, ex ante Pareto efficiency in matching, and ex post individual
rationality are indeed compatible (Bogomolnaia and Moulin, 2004).

2 In the terminology of the Bayesian mechanism design literature, every efficiency and individual rational-
ity concept we define conducts evaluations at what that literature would call the “ex post” stage (Holmström
and Myerson, 1983). Indeed, this is the stage at which such evaluations are typically made in the literature
on dominant-strategy mechanism design.

3 Note that we allow free disposal of money. Since not all of the available money has to be distributed,
we do not impose budget balance.

4 Strategy-proofness means that no agent receives a preferable assignment, from an ex ante perspective,
by misreporting their preferences.

5 Ex post Pareto efficiency in matching means that for each deterministic matching that can be realized,
no agent can be made better off without making another agent worse off. Note that this says nothing about
how money is allocated.

6 Ex ante individual rationality means that no agent finds remaining single and consuming no money
preferable to the fractional matching and amount of money they are assigned. This is a great deal weaker
than ex post individual rationality, which requires that no agent finds remaining single with no money
preferable to consuming their assigned amount of money with some deterministic matching in the support
of chosen fractional matching.

7 The impossibility holds even for random rules satisfying the ex post versions of Pareto efficiency and
individual rationality, the latter of which is the most demanding variant (Gudmundsson, forthcoming).
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For the probabilistic allocation of objects without money, strategy-proofness is incompat-
ible with Pareto efficiency and equal treatment of equals (Zhou, 1990).8 This problem may
be encoded in the bipartite version of our model by assuming that agents on one side are in-
different between all partners. However, our impossibility does not hold for this special case:
every serial dictatorship is strategy-proof, ex ante Pareto efficient, and ex post individually
rational. Indeed, the set of Pareto efficient and individually rational deterministic match-
ings expands greatly at the limit of strict preferences for both sides tending towards one side
having complete indifference. Thus, results on this limiting domain have little bearing on
the model that we study.

The difficulty with obtaining a strategy-proof, Pareto efficient, and individually rational
rule is a familiar one in other economic settings. Such rules do not exist for exchange
economies with classical preferences over at least two divisible private goods (Hurwicz, 1972;
Serizawa, 2002; Momi, 2017). Even for exchange economies with one or more public goods
produced linearly from one private good and for social choice with lotteries over alternatives,
strategy-proofness and Pareto efficiency lead to dictatorial rules (Schummer, 1999). On
the surface, these results may appear very close to ours: the space of lotteries over social
alternatives is a simplex, as is the space of fractional matchings, and preferences have linear
utility representations. Also, a fractional matching between two agents bears resemblance
to a public good, its consumption being non-rival between the pair. However, our results
differ in important ways: (1) We appeal to ex post Pareto efficiency of only the matching
rather than full ex ante Pareto efficiency of the entire allocation, allowing for money to be
“disposed of.” (2) The feasible set in our model is the product of two simplices, a fractional
matching and a division of the available money, and therefore not itself a simplex. (3) We
restrict attention to the set of linear utilities such that each agent is indifferent between two
corners of the matching simplex if and only if they assign them the same mate, as opposed
to the set of all possible linear utilities. (4) Interpreting fractional matching between a pair
as a public good, each agent’s availability would have to be a private good that has no value
to any other agent, except as an input into a Leontieff, as opposed to linear, technology that
produces the matching. So, to the best of our knowledge, none of the existing impossibility
results regarding strategy-proof and efficient rules for economies with private or public goods
covers ours.

Our result is also related to the well-known incompatibility of strategy-proofness with
8 With comparisons based on stochastic dominance, the corresponding notions of efficiency, fairness, and

strategy-proofness are incompatible (Bogomolnaia and Moulin, 2001; Nesterov, 2017) even if the domain of
ordinal preferences is restricted (Kasajima, 2013; Chang and Chun, 2016).
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allocative efficiency9 and budget balance10 in the transferable utility setting, where the con-
sumption of money is not restricted by a lower bound (Green and Laffont, 1977; Holmström,
1979).11 This incompatibility holds even for matching with transfers (Yenmez, 2013, 2015).
Allocative efficiency is a stronger requirement than (ex ante or ex post) Pareto efficiency
in matching under non-negative consumption of money.12 Consequently, our results are not
implied by these impossibilities on the domain of transferable utility problems. This dis-
tinction, on the basis of the efficiency criterion, also applies to the related results where
strategy-proofness is weakened to Bayesian incentive compatibility.13

The remainder of the paper is organized as follows. We define the model and required
concepts in Section 2. We present and discuss our impossibility results in Section 3. We
consider some ways to obtain possibility results in Section 4. We prove our results in Ap-
pendix A.

2 The Model

A fractional matching model consists of a finite set of agents N . Each agent i has a set of
possible partners Ji ⊆ N , with i ∈ Ji. If j is a possible partner of i, then i is a possible
partner of j. That is, j ∈ Ji implies i ∈ Jj. We study both bipartite and non-bipartite
matching. In bipartite matching, N is partitioned into two non-empty sets, M and W , such
that for each m ∈M , Jm = W ∪{m}, and for each w ∈ W , Jw = M ∪{w}. In non-bipartite
matching, for each i ∈ N , Ji = N .

Each agent has unit availability. For each i ∈ N , a fractional assignment divides their
availability between partners in Ji (this includes being alone). That is, a fractional assign-
ment for i is

πi ∈ ∆i ≡
{
yi ∈ RJi

+ :
∑
j∈Ji

yij = 1

}
.

For each j ∈ Ji\{i}, πij represents the amount that i is matched to j, while πii is the amount
they remain alone. For each i ∈ N and each j ∈ Ji, let δji ∈ ∆i be such that δjij = 1.

9 Allocative efficiency means that the fractional matching maximizes the sum of agents’ match utilities.
10 Budget balance means that the total allocation of money equals the amount available in the economy.
11 For the allocation of objects and a finite amount of money with non-negative consumption of money,

whether strategy-proofness and Pareto efficiency (that is, allocative efficiency and budget balance) together
imply dictatorship remains an open question, as pointed out by Schummer (2000).

12 Non-negative consumption of money implies that agents are budget constrained, so utility is only
boundedly transferable. Therefore, allocative efficiency is not a necessary condition for Pareto efficiency in
matching.

13 See the literature following Myerson and Satterthwaite (1983), particularly on partnership dissolution
(Cramton et al., 1987; Yenmez, 2012).
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Consider a profile of fractional assignments, (πi)i∈N ∈ ∆ ≡ ×i∈N∆i. For this profile
to reflect a matching, for each i ∈ N and j ∈ Ji, πij, the amount that i is matched to j,
should equal πji, the amount that j is matched with i. We represent any such (πi)i∈N as
a N × N symmetric bistochastic matrix π ∈ [0, 1]N×N . Let Σ be the set of all such π that
have integer-valued entries. So, for each (πi)i∈N ∈ ∆ that satisfies the symmetry condition
for a matching and such that for each i ∈ N and j ∈ Ji, πij ∈ {0, 1}, the corresponding
symmetric bistochastic matrix is in Σ.

A natural interpretation of this model is that of probabilistic matching. We carry out our
analysis with this interpretation. Every σ ∈ Σ is a deterministic matching. In particular,
for each i ∈ N and j ∈ Ji, σij = 1 represents i and j matched with certainty. Let Π be
the convex hull of Σ. Each π ∈ Π is a fractional matching. Such π represents a lottery over
deterministic matchings.14

Aside from being matched to one another, agents also consume a divisible private good
that we call money. Let Ω be the total non-negative quantity of this good in the economy.
Since i consumes a fractional assignment along with an amount of money, their consumption
set is Xi ≡ ∆i × R+. Let X ≡ ×

i∈N
Xi.

An allocation is (π, z) ∈ X such that π is a fractional matching and z is a feasible
distribution of available money. That is, π ∈ Π and

∑
i∈N zi ≤ Ω.15 Let Z be the set of

allocations. Since money consumption is non-negative, when Ω = 0 no monetary transfers
are feasible.

For each i ∈ N , i’s preference over Xi is represented by a utility function ui : Xi → R.
Let U lini be the set of all linear utility functions that are increasing in money.16 Since
each π ∈ Π is a probability distribution, these utility functions represent von Neumann-
Morgenstern expected utility preferences over the matching component of an allocation. For
each ui ∈ U lini , let R(ui) be the preference relation over i’s partners induced by ui. That is,
for each i ∈ N , let R(ui) be the complete preorder over Ji such that for each pair j, k ∈ Ji,
j R(ui) k if and only if ui(δji , 0) ≥ ui(δ

k
i , 0). Let U slini be the set of all linear utility functions

for i that induce strict preferences over i’s partners. That is, for each ui ∈ U lini , ui ∈ U slini if
and only if R(ui) is a linear order over Ji.

14 Given our probabilistic interpretation, not every (πi)i∈N ∈ ∆ that satisfies the symmetry condition is
necessarily a fractional matching. This is because a symmetric bistochastic matrix may not be equivalent to
any convex combination of symmetric permutation matrices. For the bipartite case with N partitioned into
M and W , there is a one-to-one correspondence between symmetric profiles in ∆ and M ×W bistochastic
matrices. So, by the Birkhoff-von Neumann Theorem (Birkhoff, 1946; von Neumann, 1953), every symmetric
profile in ∆ is in the convex hull of Σ. That is, the set of fractional matchings, Π, corresponds to the set of
symmetric profiles in ∆. This equivalence does not hold generally for the non-bipartite case.

15 This restriction on z is often referred to as “budget feasibility” or “weak budget balance.”
16 For each i ∈ N and each ui ∈ U lini , there exists vi ∈ RJi and γ ∈ R++ such that ui(πi, zi) = vi ·πi+γzi.
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We show our results for U slin ≡ ×
i∈N
U slini , the subdomain of problems with linear utility

that are increasing in money and induce strict preferences over partners.17

Since we fix N , (Ji)i∈N , and Ω, a problem is fully described by a profile of utility functions
u ∈ U slin. A rule, ϕ : U slin → Z, assigns to each problem an allocation.

Properties of Allocations and Rules Let u ∈ U slin and (π, z) ∈ Z.
If each agent is at least as well off at (π, z), before lottery π is conducted, as remaining

alone and consuming zero money, we say that (π, z) is ex ante individually rational at u.
That is, (π, z) is ex ante individually rational if for each i ∈ N , ui(πi, zi) ≥ ui(δ

i
i, 0). This

is weaker than the requirement that after the lottery π is conducted, the realized allocation
satisfies each agent’s welfare lower-bound of being unmatched with no money.18

We say that a deterministic matching is Pareto efficient if there is no deterministic
matching that each agent finds at least as desirable and at least one agent prefers. That is,
σ ∈ Σ is Pareto efficient if there is no σ′ ∈ Σ such that for each i ∈ N , ui(σ′i, 0) ≥ ui(σi, 0),
and for some i ∈ N, ui(σ

′
i, 0) > ui(σi, 0).19 We say that a fractional matching is ex post

Pareto efficient if it can be conducted so that a Pareto efficient deterministic matching is
realized. That is, π ∈ Π is ex post Pareto efficient if and only if it is a convex combination
of Pareto efficient deterministic matchings. We say that an allocation (π, z) ∈ Z is ex post
Pareto efficient in matching if π is ex post Pareto efficient. This efficiency property is mild
in two respects. First, it applies only to the matching dimension of the allocation and makes
no statement about how money is allocated. Second, the welfare statement is made after
the conduct of the lottery as opposed to before: the stronger ex ante notion would require
that there be no alternative fractional matching that would increase some agent’s utility
without decreasing another’s. Thus, to say that (π, z) is ex post Pareto efficient in matching
is clearly weaker than the usual notion of Pareto efficiency: (π, z) is fully Pareto efficient if
there is no other allocation (π′, z′) ∈ Z such that for each i ∈ N , ui(π′, z′) ≥ ui(π, z), and
for some i ∈ N , ui(π′, z′) > ui(π, z).

Finally, let ϕ : U slin → Z be a rule. We say that ϕ is strategy-proof if, for each u ∈ U slin
17 Our results hold even if we normalize the marginal utility of money to one and the utility from being

matched to oneself to zero.
18 Suppose that Ω units of money were originally distributed as part of a private endowment (ωi)i∈N ∈ RN+

such that
∑
i∈N ωi = Ω. In such an economy, the natural welfare lower-bound for i ∈ N would be ui(δii , ωi).

However, ex ante individual rationality as we have defined it is weaker than satisfying this alternative lower-
bound, since ωi is non-negative and utility is increasing in money.

19 Because utility is separable in money, the utility comparisons do not depend on the level of money
consumption use in the definition.
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and each i ∈ N , there is no u′i ∈ U slini such that

ui(ϕi(u
′
i, u−i)) > ui(ϕi(u)).

3 Impossibility

Our main result, described by two theorems, is that no strategy-proof and ex ante individu-
ally rational rule always selects an ex post Pareto efficient matching, no matter the available
quantity of money Ω. We note here some important points about this result. First, as
described above, our proof only appeals to linear utility functions that induce strict prefer-
ences over partners. When fractional matchings are interpreted as a division of time across
partners (Manjunath, 2016), our result is particularly robust: in the domain of all concave
utility functions over fractional matchings, the domain of linear utility functions is negligible.
Second, as we have also pointed out above, our individual rationality and efficiency axioms
are very weak. In particular, we do not require an efficient allocation of money, but only
ex post Pareto efficiency of the matching. When money is available, it then permits the
designer some potential latitude in satisfying the constraints imposed by strategy-proofness
and ex ante individual rationality, without the burden of having to allocate money in an
efficient manner. Despite this, we show below that these axioms are incompatible.

We begin with the bipartite case, with N partitioned into M and W .

Theorem 1. For a bipartite model, if |M | ≥ 2 and |W | ≥ 2, then no rule is strategy-proof,
ex post Pareto efficient in matching, and ex ante individually rational.

We illustrate the core argument of the proof in Figures 1 and 2 for the case without
money (Ω = 0). When there is money, the need for an additional (fourth) dimension makes
a diagrammatic representation infeasible. The proof is in Appendix A.

Next, we consider the non-bipartite model. Since the non-bipartite model places no re-
striction on the set of possible partners, the set of feasible matchings expands. Unfortunately,
as long as there are at least three agents, the impossibility persists.

Theorem 2. For a non-bipartite model, if |N | ≥ 3, then no rule is strategy-proof, ex post
Pareto efficient in matching, and ex ante individually rational.

To prove Theorem 2, consider first the case where |N | ≥ 4. Fix a bi-partition of the
agents such that there are at least two agents on each “side”. The domain of utility profiles
in the bipartite model with this fixed partition corresponds to the subdomain of utility
profiles in the original non-bipartite model where each agent gets higher utility from being
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m1 ↔ w1

m2 ↔ w2
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m2 ↔ w1

)
σ3(

m1 w2

m2 ↔ w1

) σ4(
m1 ↔ w2

m2 w1

)
(a) Let M = {m1,m2} and W = {w1, w2},
and u, u′ ∈ Uslin be such that they induce the
above preferences over partners and the indiffer-
ence planes of um1 , u

′
m1
, um2 , and u′m2

are as in
Figures 1b, 1c, and 2c. Let σ1, σ2, σ3, σ4 ∈ Σ be
as indicated.

uw1, uw2

π σ1σ2

1− ll

um1 , um2

(b) At u, ex post Pareto efficiency in matching
requires π ≡ ϕ(u) to be a convex combination
of σ1 and σ2. The figure indicates directions of
increasing preferences for each agent. We consider
the case of l ≤ 1

2 as the proof for the alternative
case is analogous.

um1

σ1σ2
π

σ3

um2

(c) At (u′m1
, u−m1), ex-post Pareto efficiency

in matching requires ϕ to choose a convex
combination of σ1, σ2, and σ3. Indifference
lines of um1 are flatter than the σ2-σ3 face of
the simplex since m1 is fully single at σ3. On
the other hand, indifference lines of um2 are
parallel to it since m2 is matched fully to w1

by both σ2 and σ3.

σ1σ2
π

σ3

u′
m1

um1

(d) We define u′m1
to be such that π is worse under u′m1

for m1 than being fully unmatched. Ex ante individual
rationality requires that ϕ(u′m1

, u−m1) be to the right
of the indifference line of u′m1

through σ3. Strategy-
proofness requires that it be above (per the orientation
of this figure) the indifference line of um1 through π,
otherwise at the true preference um1 , m1 would gain by
reporting u′m1

. Thus, only points in the shaded area are
possible.

Figure 1: Illustration of the proof of Theorem 1 for the case without money.
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σ1σ2
π

u′
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σ3

(a) In terms of um2 , the best choice of ϕ in the
shaded area maximizes the weight on σ1. We
mark it by π′. Since l ≤ 1

2 , the weight π′ places
on σ1 is no greater than um1w1+um1w2

2um1w1
. We de-

fine u′m1
with indifference lines as depicted. We

will construct a profitable misreport for m2 at
(u′m1

, u−m1).

u′m1

π′um2

σ1σ2
π

σ4

σ3

(b) At (u′M , uW ), ex-post Pareto efficiency in
matching requires ϕ to choose a convex combina-
tion of σ1, σ2, σ3, and σ4. The indifference plane
for u′m1

indicates indifference to shifting mass be-
tween σ2 and σ4, since both of them match m1

to w2 fully. We define um2 with the indifference
planes as depicted.

u′
m2

π′

σ4

σ2

σ3

σ1

(c) We define u′m2
with indifference planes as de-

picted. Ex ante individual rationality requires
that π′′ ≡ ϕ(u′M , uW ) lie above the indifference
plane of u′m2

through σ4, which leaves m2 fully
unmatched. According to u′m2

, π′ is worse than
being fully unmatched.

σ1

um2

σ3

σ4

σ2

π′′π′

(d) Ex ante individual rationality for m1 at um′
1

and for m2 at u′m2
narrows down the possible lo-

cations for π′′ = ϕ(u′M , uW ) to the bottom-right
wedge that includes σ1, shaded in green. How-
ever, according to um2 , every point in this wedge
is better than π′. In turn, as per Figure 2a, π′ is
no worse than ϕ(u′m1

, u−m1). This means that ϕ
is not strategy-proof, since m2 gains by reporting
u′m2

at the true profile (u′m1
, u−m1).

Figure 2: Illustration of the proof of Theorem 1 for the case without money, continued.
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unmatched than from being matched to someone on the same “side.” On this subdomain,
the requirement of ex post Pareto efficiency in matching rules out any matching of agents on
the same “side,” leaving only those matchings that are feasible in the constructed bipartite
model. Then the impossibility result of Theorem 1 applies to this subdomain in the non-
bipartite model, and so extends to the whole domain. We prove the remaining case where
|N | = 3 in Appendix A.

If we further drop the assumption that matches are pairwise, then we admit coalition
formation problems. Pairwise and (non-)bipartite matching problems can be modeled as
coalition formation problems where all agents derive lower utility from being in any coalition
with three or more members than from being alone. Ex post Pareto efficiency in matching
would rule out any partition of agents where some coalition contains three or more agents.
Therefore, Theorems 1 and 2 extend the negative result to coalition formation problems with
three or more agents.

Corollary 1. For fractional coalition formation problems, if |N | ≥ 3 and U ⊇ U slin, then
no rule for U is strategy-proof, ex post Pareto efficient in matching, and ex ante individually
rational.

Independence of axioms For completeness, we show that the axioms in our theorems are
independent by demonstrating the existence of a rule satisfying every pair from the triplet
of axioms. If Ω > 0, then for any ω = (ωi)i∈N ∈ RN

++ satisfying
∑

i∈N ωi = Ω, any rule
that, for each u ∈ U slin, selects some DIP-equilibrium allocation at money endowment ω
(Manjunath, 2016) is fully Pareto efficient (and hence ex post Pareto efficient in matching)
and ex ante individually rational. If Ω = 0, then any rule that selects a limit—as ε → 0—
of εDIP-equilibrium allocations (Manjunath, 2016) is an example of such a rule. The “no
trade” rule, which leaves every agent unmatched and does not distribute any money to
agents, is strategy-proof and ex post (and therefore ex ante) individually rational, but not
ex post Pareto efficient in matching. Finally, any serial dictatorship over Z is strategy-proof
and fully Pareto efficient (and hence ex post Pareto efficient in matching) but not ex ante
individually rational.

Ordinal rules in the absence of money Without money distribution, an interesting
restriction that we may impose on a rule is that it be invariant to all information other
than how agents rank their possible partners. A rule ϕ with is ordinal if it only depends
on induced preferences over partners. That is, for each pair u, u′ ∈ U slin, if for each i ∈ N ,
R(ui) = R(u′i), then ϕ(u) = ϕ(u′).
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Ordinality is particularly relevant when the model has as a primitive each agent’s pref-
erences over partners. For each i ∈ N , let Pi be the set of linear orders over Ji. For each
i ∈ N and each �i∈ Pi, let U(�i) ⊆ U slini be the set of utility functions that induce �i. If
the starting point is a profile of preferences, we may describe a problem by �∈ ×i∈NPi ≡ P .
To consider ordinal rules as defined above is to consider ranking-based rules, that is, rules
that map P to Π. A ranking-based rule ϕ is deterministic if for each �∈ P , ϕ(�) ∈ Σ.

For a bipartite model, Alcalde and Barberà (1994) show that no ranking-based and de-
terministic rule is strategy-proof, Pareto efficient and ex post individually rational.20 Does
dropping the restriction that the rule be deterministic allow an escape from this incompat-
ibility? We define particular extensions of strategy-proofness and individual rationality to
non-deterministic rules and explain how Theorem 1 answers this question in the negative.

For ranking-based and non-deterministic rules, a natural generalization of strategy-proofness
is stochastic-dominance (SD) strategy-proofness. It says that any change that an agent can
effect by misreporting their preferences is a worsening in the sense of first-order stochastic
dominance. Equivalently, a ranking-based rule ϕ is SD strategy-proof if for each �∈ P ,
i ∈ N , �′i∈ Pi, and ui ∈ U(�i),

ui(ϕi(�)) ≥ ui(ϕi(�′i,�−i)).

If a ranking-based rule is SD strategy-proof, then it naturally defines a strategy-proof and
ordinal rule for U slin.

Similarly, SD individual rationality says that each agent receives a lottery that stochasti-
cally dominates being alone with certainty. However, this is equivalent to ex post individual
rationality and therefore implies ex ante individual rationality.

Notice that ranking-based rules are a subset of the rules we have considered in our main
result, since they uniquely correspond to ordinal rules for U slin. We thus have the following
corollary to Theorem 1, which extends the result of Alcalde and Barberà (1994) to non-
deterministic matching.

Corollary 2. For a bipartite model without money, if |M | ≥ 2 and |W | ≥ 2, then no ranking-
based rule is SD strategy-proof, ex post Pareto efficient, and SD individually rational.

Sönmez (1999) shows a general result that for non-bipartite problems implies there is no
ranking-based and deterministic rule that is strategy-proof, Pareto efficient and ex post indi-
vidually rational. We extend this result to non-deterministic rules in the following corollary
to Theorem 2.

20 A ranking-based and deterministic rule ϕ is strategy-proof if for each i ∈ N , �∈ P and �′i∈ Pi,
ϕi(�) �i ϕi(�′i,�−i), and individually rational if ϕi(�) �i i.
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Corollary 3. For a non-bipartite model without money, if |N | ≥ 3, then no ranking-based
rule is SD strategy-proof, ex post Pareto efficient, and SD individually rational.

Lower-bounds on consumption of money We have imposed the restriction that each
agent consumes a non-negative quantity of money. Consequently, ours is not a transferable
utility model: utility is transferable only to the extent of re-allocating the Ω units of money
in the economy, subject to the non-negativity constraint. We interpret these lower bounds
as modeling budget constraints on the parts of the agents since our analysis is not sensitive
to the lower bound being zero, rather than some other finite amount.21

If we drop the non-negativity restriction on the allocation of money, then utility is fully
transferable. In this case, full Pareto efficiency implies allocative efficiency, which says that
the chosen matching maximizes the sum of agents’ utilities. However, allocative efficiency
is still considerably stronger than ex post Pareto efficiency of the matching rule. Take for
example a problem with two agents i, j ∈ N such that

ui(πi, zi) = πij + zi, and
uj(πj, zj) = −πji

2
+ zj,

Allocative efficiency says that the two agents are matched fully. On the other hand, every
matching in Π is ex post Pareto efficient, since the agents being left unmatched is Pareto
efficient. So, for this economy, allocative efficiency narrows the selection down to a single
choice while ex post Pareto efficiency in matching says nothing at all.

For the transferable utility version of our model, that is, without a lower-bound on money
consumption to respect, there are strategy-proof rules that satisfy normative properties even
stronger than allocative efficiency.22 However, none of these rules respect both ex ante in-
dividual rationality and the aggregate budget constraint on the allocation of money. That
is, under the feasibility condition that the budget of Ω units of money consumption be
respected, strategy-proofness, ex ante individual rationality, and allocative efficiency are in-
compatible with two or more agents (Green and Laffont, 1977; Holmström, 1979; Myerson
and Satterthwaite, 1983).23 As we discuss in the next section, for the case of two agents,

21 Given linearity of utility in money, a situation where b ∈ RN+ is the profile of borrowing limits, ω ∈ RN+
is the profile of money endowments, and ω0 ∈ R+ is the planner’s money endowment can be translated
to a situation where money consumption must be non-zero, ω + b is the profile of money endowments,
and Ω = ω0 +

∑
i∈N (bi + ωi) is the total amount money in the economy. Recall that our definition of

individual rationality makes no reference to any private money endowment of an agent. So if negative
money consumption and borrowing up to the limit were allowed this definition requires that each agent i
should receive at least as much utility from the rule as they would receive if they were unmatched and with
money consumption equal to −bi. See also footnote 18.

22 See, for instance, Yenmez (2013, 2015).
23 Though Vickrey-Clarke-Groves rules are strategy-proof and allocatively efficient (Vickrey, 1961; Clarke,
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strategy-proofness, ex ante individual rationality and ex post Pareto efficiency in matching
are compatible. The reason this does not contradict these classical impossibilities for trans-
ferable utility models is the weakness of ex post Pareto efficiency in matching as compared
to allocative efficiency.

4 Possibility

We discuss how modifying key features of our model permits one to escape impossibility. As
we have noted on Page 7, any rule that is strategy-proof, ex post Pareto efficient in matching,
and ex ante individually rational for problems where Ω = 0 extends trivially to problems
where Ω > 0: dispose of the money and then apply the rule. If full Pareto-efficiency is
desired as well, it can easily be achieved, by distributing all available money in some fixed
manner. Thus, we only consider in this section the case of Ω = 0.

Diversity of preferences The preferences in U slin include, for each i ∈ N , all orderings
over i’s partners. The diversity of these preferences for all agents is critical for the incom-
patibility. In the bipartite model, certain restrictions on the domain of preferences for one
of the two sides can alleviate this impossibility. We present here just one such restriction
and show the existence of a ranking-based rule.

Suppose that for each agent m ∈ M , their ranking of all agents in W is fixed: for each
pair Pm, P ′m ∈ Pm, and each pair w,w′ ∈ W , w Pm w′ if and only if w P ′m w′. Moreover, this
fixed ranking is the same across all agents in M : for each pair m,m′ ∈ M , each Pm ∈ Pm,
each Pm′ ∈ Pm′ , and each pair w,w′ ∈ W , w Pm w′ if and only if w Pm′ w′. The only
variation in preferences of each m ∈ M is in how they rank being alone. This restriction is
meaningful when the ranking of agents in W is objectively fixed, but each agent in M has a
different outside option or opportunity cost, which is their private information.24 Denote by
PcM these preferences where the private information of each agents in M is only their cutoff.

Consider the domain (PcM ,PW ). It follows directly from the lattice structure of the core
that there is a unique core allocation for each preference profile in this domain. Thus, the
rule that selects this unique core allocation defines a strategy-proof, ex post Pareto efficient
in matching, and ex post (and hence ex ante) individually rational rule (Sönmez, 1999).

1971; Groves, 1973), they do not satisfy individual rationality on our domain of preferences.
24 Real-world applications include college admissions when an objective ranking is generated by grade point

averages or entrance exam scores, and residency matching when residency positions are commonly ranked by
doctors on the basis of prestige or reputation. In addition to cardinal information, the heterogeneity across
colleges is in their acceptability cutoff, and across doctors is in their outside option.
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Proposition 1. There exists a rule ϕ : (PcM ,PW )→ Π, that is strategy-proof, ex ante Pareto
efficient, and ex post individually rational, as well as deterministic and ranking-based.

While the domain (PcM ,PW ) involves a restriction in preferences across agents, another
path to possibility is to restrict each agent to a very sparse set of preferences. Alcalde and
Barberà (1994) provide a very severe restriction of this type that is sufficient for the existence
of a rule satisfying the properties listed in Proposition 1.

More than one agent on both sides in bipartite model Our impossibility for the
bipartite model relies upon multiplicity of agents on both sides. If either |M | = 1 or |W | = 1,
then our axioms turn out to be compatible.

Suppose without loss of generality that M = {m}. Regardless of cardinality of W , there
is a strategy-proof, ex post Pareto efficient in matching, and ex ante individually rational
rule ϕ defined over U lin as follows: Given u ∈ U lin, let W̃ (u) ≡ {w ∈ W : uw(δmw , 0) ≥
uw(δww , 0) and um(δwm, 0) ≥ um(δmm, 0)} and, if W̃ (u) 6= ∅, let w̃(u) ∈ argmaxw∈W̃ (u)um(δwm, 0).
Finally let, ϕ(u) ≡ (σ, 0) where σ ∈ Σ is such that if W̃ (u) 6= ∅, σmw̃(u) = 1 but if W̃ (u) = ∅,
for each i ∈ N, σii = 1. In words, ϕ matches m to their most preferred partner among those
who prefer being matched to m than being alone. If no such partner exists, it leaves m
unmatched. An analogous rule exists if |W | = 1.

Proposition 2. If either |M | = 1 or |W | = 1, then there exists a rule that is strategy-proof,
ex post Pareto efficient in matching, and ex ante individually rational.

Expected utility preferences We have modeled agents as being von Neumann-Morgenstern
expected utility maximizers. As noted earlier in the discussion of ordinal rules, first-order
stochastic dominance with respect to an ordering over deterministic outcomes defines an
incomplete order over lotteries, and every expected utility preference is an extension of some
such stochastic dominance order. There are many alternatives to expected utility theory
that extend stochastic dominance, but the impossibility result holds for any such alternative
that nests expected utility. The lexicographic extension approach (Cho, 2014; Schulman and
Vazirani, 2012) is an interesting alternative that does not nest expected utility but extends
stochastic dominance.25

A lexicographic extension preference RL
i of an agent i over the set of fractional assignments

∆i is characterized by a complete linear order �i of i’s possible partners, Ji, such that, for
25 The lexicographic extension is a special case of the more general lexicographic expected utility the-

ory (Hausner, 1954; Thrall, 1954; Chipman, 1960). For allocation problems with lexicographic extension
preferences, there exist strategy-proof, Pareto efficient, and envy-free rules for the case of divisible goods
(Schulman and Vazirani, 2012) and of indivisible goods (Cho, 2018; Saban and Sethuraman, 2014). For more
on lexicographic extensions, we refer the reader to Cho (2012), Cho (2014), and Cho and Doğan (2016).
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each pair πi, π′i ∈ ∆i, πi RL
i π

′
i if and only if πi = π′i or there is k ∈ Ji such that for each

l �i k, πil = π′il and πik > π′ik.
Let RL

i be the set of all lexicographic extension preferences on ∆i. Let RL ≡ ×i∈NRL
i .

A rule ϕ maps RL to Π. Given that each RL
i ∈ RL

i uniquely corresponds to a linear order �i
over possible partners of i, its partner ranking, a deterministic matching is Pareto efficient
with respect to RL if and only if it is Pareto efficient with respect to �. So, π ∈ Π is ex
post Pareto efficient at RL if and only if the deterministic matchings in the support of π are
Pareto efficient with respect to the corresponding �. The appropriate definitions of strategy-
proofness and ex ante individual rationality use RL

i to compare lotteries. A rule ϕ on RL is
strategy-proof if for each RL ∈ RL, each i ∈ N , and each R̃L

i ∈ RL
i , ϕi(RL) RL

i ϕi(R̃
L
i , R

L
−i).

It is ex ante individually rational if for each RL ∈ RL and each i ∈ N , ϕi(RL) RL
i δ

i
i. Notice

that π ∈ Π is ex ante individually rational at RL if and only if for each i ∈ N , πi = δii

or πij > 0 for some partner j ∈ Ji \ {i} such that j �i i, where �i is the linear order
corresponding to RL

i .
We describe a class of rules ΦL for lexicographic extension preferences that satisfy our

target properties of strategy-proofness, ex post Pareto efficiency in matching, and ex ante
individual rationality. These rules are defined by a procedure resembling randomization over
serial dictatorships.

Let O be the set of all (|N |!) orderings of the agents in N . Each member of ΦL is
parameterized by an exogenous randomization device ρ that has the following full support
property : for each i ∈ N , there is a o ∈ O that puts i first and has ρ(o) > 0. Fix such a
randomization device ρ. The following procedure uses ρ to define a rule ϕ ∈ ΦL. For each
o ∈ O and each preference profile RL, it produces a deterministic matching, and ϕ(RL) puts
probability ρ(o) on it.

1. Randomize: Use randomization device ρ to determine o ∈ O.
2. Initialize: Begin with no agent marked as “removed”.

3. Removal Phase: Select the highest ranked unmarked agent, according to o, amongst
those who find no other unmarked agent acceptable. Match this agent to themselves,
and mark them. Repeat until there is no such agent.

4. Match Phase: Select the highest ranked unmarked agent, according to o. Match this
agent to their most preferred partner amongst those unmarked, and mark them both.
Repeat until no unmarked agent remains.

We prove the following result in Appendix A.

Proposition 3. Each rule in ΦL is strategy-proof, ex post Pareto efficient in matching, and
ex ante individually rational.
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Appendices

A Proofs

Proof of Theorem 1. We prove the result by contradiction. Suppose that ϕ is a strategy-
proof, ex post Pareto efficient in matching, and ex ante individually rational rule. Let
K > 12Ω.

We start with the case where |M | = |W | = 2. Let M ≡ {m1,m2} and W ≡ {w1, w2}.
Let u ∈ U slin be such that for each (π, z) ∈ Z,

um1(πm1 , zm1) = Kπm1w1 + K
2
πm1w2 + zm1 ,

um2(πm2 , zm2) = Kπm2w2 + K
2
πm2w1 + zm2 ,

uw1(πw1 , zw1) = Kπw1m2 + K
2
πw1m1 + zw1 , and

uw2(πw2 , zw2) = Kπw2m1 + K
2
πw2m2 + zw2 .

Let (π, z) ≡ ϕ(u). By definition of u, the only Pareto efficient deterministic matchings in Σ

are σ1 and σ2, where σ1
m1w1

= σ1
m2w2

= 1 and σ2
m1w2

= σ2
m2w1

= 1. By ex post Pareto efficiency,
π is a convex combination of σ1 and σ2. Let l ∈ [0, 1] be such that π = lσ1 + (1− l)σ2.

Suppose that l ≤ 1
2
. Let α > 14K+32Ω

K−12Ω
.26 By definition of Ω and K, 14K+32Ω

K−12Ω
≥ 14, and so

α > 14.27 Let u′m1
∈ U slinm1

be such that for each (πm1 , zm1) ∈ Xm1 ,

u′m1
(πm1 , zm1) = Kπm1w1 − αKπm1w2 + zm1 .

Let (π′, z′) ≡ ϕ(u′m1
, u−m1). By definition of (um1 , u−m1), the only Pareto efficient determinis-

tic matchings are σ1 and σ2 defined above and σ3 ∈ Σ such that σ3
m1m1

= σ3
w2w2

= σ3
m2w1

= 1.
By ex post Pareto efficiency, π′ is a convex combination of σ1, σ2, and σ3. Thus,

π′m1w1
= π′m2w2

. (1)

Notice that um1(πm1 , zm1) = Kl +K(1−l
2

) + zm1 = K(1+l
2

) + zm1 . By strategy-proofness,

Kπ′m1w1
+
K

2
π′m1w2

+ z′m1
= um1(π

′
m1
, z′m1

) ≤ um1(πm1 , zm1) = K

(
1 + l

2

)
+ zm1 .

26 We define α this way to ensure that αK−Ω
α+2 > 7

8K + 3
2Ω, a fact that we appeal to below.

27 Since When Ω = 0, K is any positive number and α > 14.
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Then, since K > 0, zm1 ≤ Ω, and z′m1
≥ 0,

Kπ′m1w1
≤ Kπ′m1w1

+
K

2
π′m1w2

≤ K

(
1 + l

2

)
+ zm1 − z′m1

≤ K

(
1 + l

2

)
+ Ω.

Thus, since l ≤ 1
2
and K > 12Ω,

π′m1w1
≤ 3

4
+

Ω

K
< 1. (2)

Since π′m2m2
= 0 and z′m2

≤ Ω, by (1) and (2),

um2(π
′
m2
, z′m2

) ≤ K

(
3

4
+

Ω

K

)
+
K

2

(
1

4
− Ω

K

)
+ Ω =

7

8
K +

3

2
Ω. (3)

Let u′m2
∈ U slinm2

be such that for each (πm2 , zm2) ∈ Xm2 ,

u′m2
(πm2 , zm2) = Kπm2w2 − αKπm2w1 + zm2 .

Define (π′′, z′′) ≡ ϕ(u′M , uW ). By definition of (u′M , uW ), the only Pareto efficient determin-
istic matchings are σ1, σ2, and σ3 defined above and σ4 ∈ Σ such that σ4

m1w2
= σ4

m2m2
=

σ4
w1w1

= 1. By ex post Pareto efficiency, π′′ is a convex combination of σ1, σ2, σ3, and σ4. So
there are p, q, r, s ∈ [0, 1] such that π′′ = pσ1 + qσ2 + rσ3 + sσ4 and p+ q + r + s = 1.

Since (π′′, z′′) is ex ante individually rational at (u′M , uW ) and p = 1− q + r + s,

u′m1
(π′′m2

, z′′m1
) = Kp− αK(q + s) + z′′m1

≥ 0 = u′m1
(δm1
m1
, 0) (4)

and
u′m2

(π′′m2
, z′′m2

) = Kp− αK(q + r) + z′′m2
≥ 0 = u′′m2

(δm2
m2
, 0) (5)

Adding (4) and (5),

2Kp− αK(q + r + s)− αKq + z′′m1
+ z′′m2

≥ 0,

which, since p = 1− q − r − s, implies

2Kp− αK(1− p) ≥ αKq − z′′m1
− z′′m2

.
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Then, since αKq ≥ 0 and −z′′m1
− z′′m2

≥ −Ω, we have 2Kp− αK(1− p) ≥ −Ω, so

p ≥ αK − Ω

(α + 2)K
. (6)

By definition of K and α, αK > Ω. Thus, the right hand side of (6) is positive but less than
one.
Finally, since K > 0 and z′′m2

≥ 0, and by (6),

um2(π
′′
m2
, z′′m2

) = Kp+
K

2
(q + r) + z′′m2

≥ Kp ≥ αK − Ω

α + 2
.

However, by definition of α and (3),

um2(π
′′
m2
, z′′m2

) ≥ αK − Ω

α + 2
>

7

8
K +

3

2
Ω ≥ um2(π

′
m2
, z′m2

).

This contradicts the strategy-proofness of ϕ, since m2 can profitably manipulate it by re-
porting u′m2

at the profile (u′m1
, u−m1).

Thus, l > 1
2
. However, we reach an analogous contradiction by interchanging the roles of

M and W .
Now, we consider the case of |M | > 2 or |W | > 2. Since both |M | ≥ 2 or |W | ≥ 2, let

m1 and m2 be distinct members of M and let w1 and w2 be distinct members of W . Let
m3,m4, . . . be a labeling of M \ {m1,m2} and w3, w4, . . . be a labeling of W \ {w1, w2}. We
start with u ∈ U slin such that for each (π, z) ∈ Z,

um1(πm1 , zm1) = Kπm1w1 + K
2
πm1w2 −

∑|W |
t=3 tπm1wt + zm1 ,

um2(πm2 , zm2) = Kπm2w2 + K
2
πm2w1 −

∑|W |
t=3 tπm2wt + zm2 ,

uw1(πw1 , zw1) = Kπw1m2 + K
2
πw1m1 −

∑|M |
t=3 tπw1mt + zw1 ,

uw2(πw2 , zw2) = Kπw2m1 + K
2
πw2m2 −

∑|M |
t=3 tπw2mt + zw2 ,

for each m ∈M \ {m1,m2},

um(πm, zm) = zm −
|W |∑
t=1

tπmwt ,

and for each w ∈ W \ {w1, w2},

uw(πw, zw) = zw −
|M |∑
t=1

tπwmt .
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By definition of u, for each Pareto efficient deterministic matching σ and each distinct pair
i, j ∈ N such that i /∈ {m1,m2, w1, w2}, σij = 0. Thus, for each ex post Pareto efficient
π ∈ Π and each i ∈ N \ {m1,m2, w1, w2}, πii = 1. Since each agent in N \ {m1,m2, w1, w2}
remains unmatched at any ex post Pareto efficient matching, the proof proceeds in the same
manner as the case with |M | = |W | = 2.

Proof of Theorem 2, Case |N | = 3. Since we restrict attention to the case of three agents,
we name them 1,2, and 3.

For this three agent model, Σ consists of the following four deterministic matchings:

σ0 =

 1↔ 1

2↔ 2

3↔ 3

 , σ12 =

 1↔ 2

2↔ 1

3↔ 3

 , σ13 =

 1↔ 3

2↔ 2

3↔ 1

 , σ23 =

 1↔ 1

2↔ 3

3↔ 2

 .

The set of fractional matchings Π is the convex hull of these four deterministic matchings.
We now present a series of claims before completing the proof. Our first claim is a

consequence of the following: if π ∈ Π is ex post Pareto efficient, then it places zero weight
on elements of Σ that are Pareto dominated.

Claim 1. If π is ex post Pareto efficient at u ∈ U slin and there is a distinct pair of agents
i, j ∈ N such that i most prefers j under R(ui) and j most prefers i under R(uj), then π

puts zero weight on σ0.

Our remaining claims bound from below the weight that is placed on matching a distinct
pair of agents who prefer each other over the third. Whether such a bound exists, and the
magnitude of this bound when it does, depends on the marginal rate of substitution between
the matching portion of each agent’s consumption and money. In what follows, suppose
there exists a strategy-proof, ex post Pareto efficient in matching, and ex ante individually
rational rule ϕ.

Claim 2. Let K > 3Ω. Suppose u ∈ U slin is such that there is a distinct pair i, j ∈ N for
whom

ui(πi, zi) = Kπij −Kπik + zi

and
uj(πj, zj) = Kπji −Kπjk + zj,

where {k} = N \ {i, j}. If (π, z) = ϕ(u), then πij ≥ 1− 3Ω
K
.

Proof of Claim 2. We fix uk ∈ U slink and prove that as long as ui and uj satisfy the conditions
in the claim, then they are matched to one another within 3Ω

K
. Consequently, we denote a

profile of utilities only as a pair of utility functions, one for each of i and j.
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Let u0 ∈ U slin be such that

u0
i (πi, zi) = Kπij −Kπij + zi

and
u0
j(πj, zj) = Kπji −Kπjk + zj.

Let (π00, z00) ≡ ϕ(u0
i , u

0
j). Suppose that π00

ij < 1 − 3Ω
K
. Then by ex post Pareto efficiency

and Claim 1, π00
ik > 0 or π00

jk > 0. Without loss of generality, suppose that π00
ik > 0.

Let α > 0 be such that

1 >
α− Ω

K

α + 2
>

π00
ij +1

2
+ Ω

2K
+ 1

2
+

Ω

2K
.

Such α exists since π00
ij < 1− 3Ω

K
. Let u1 ∈ U slin be such that

u1
i (πi, zi) = Kπij − αKπik + zi

and
u1
j(πj, zj) = Kπji − αKπjk + zj.

Let (π10, z10) ≡ ϕ(u1
i , u

0
j), (π

01, z01) ≡ ϕ(u0
i , u

1
j), and (π11, z11) ≡ ϕ(u1

i , u
1
j). Since ϕ is

strategy-proof, i does not benefit by misreporting u1
i at the preference profile u0, so

Kπ10
ij −Kπ10

ik + z10
i ≤ Kπ00

ij −Kπ00
ik + z00

i [since u0
i (π

10
i , z

10
i ) ≤ u0

i (π
00
i , z

00
i )]

⇒ Kπ10
ij −K(1− π10

ij ) + 0 ≤ Kπ00
ij − 0 + Ω [since π10

ik ≤ 1− π10
ij , π

00
ik ≥ 0,

z10
i ≥ 0, and, z00

i ≤ Ω]

Thus,

π10
ij ≤

π00
ij + 1

2
+

Ω

2K
(7)

Since ϕ is ex ante individually rational, u1
i (π

11
i , z

11
i ) ≥ 0 and u1

j(π
11
j , z

11
j ) ≥ 0. That is,

Kπ11
ij − αKπ11

ik + z11
i ≥ 0

and
Kπ11

ji − αKπ11
jk + z11

j ≥ 0.

Adding these together, and by symmetry of π11 (that is, π11
ij = π11

ji ), by Claim 1 (that is,
π11
ij + π11

jk + π11
ki = 1), and by budget feasibility of z11 (that is, z11

i + z11
j ≤ Ω),

2Kπ11
ij − αK(1− π11

ij ) + Ω ≥ 0

⇒ K(α + 2)π11
ij − αK + Ω ≥ 0
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yielding

π11
ij ≥

α− Ω
K

α + 2
. (8)

From (7), (8), and the definition of α,

π11
ij >

π10
ij +1

2
+ Ω

2K

⇒ 2Kπ11
ij −K > Kπ10

ij + Ω

⇒ Kπ11
ji −K(1− π11

ji ) > Kπ10
ji + Ω

⇒ Kπ11
ji −Kπ11

jk > Kπ10
ji −Kπ10

jk + Ω [by symmetry of π10 and π11, Claim 1,
and π10

jk ≥ 0]

⇒ Kπ11
ji −Kπ11

jk + z11
j > Kπ10

ji −Kπ10
jk + z10

j [since z11
j ≥ 0 and z10

j ≤ Ω]

⇒ u0
j(π

11
j , z

11
j ) > u0

j(π
10
j , z

10
j ).

However, this contradicts the strategy-proofness of ϕ since j benefits from misreporting u1
j

at the preference profile (u1
i , u

0
j). Thus, π00

ij ≥ 1− 3Ω
K
.

Claim 3. Let K > 16Ω. Suppose u ∈ U slin is such that there is a distinct pair i, j ∈ N for
whom

ui(πi, zi) = Kπij + 3K
4
πik + zi

and
uj(πj, zj) = Kπji −Kπjk + zj,

where {k} = N \ {i, j}. If (π, z) = ϕ(u), then πij ≥ 1− 16Ω
K

.

Proof of Claim 3. Consider u′i ∈ U slini such that

u′i(πi, zi) = Kπij −Kπik + zi

and let (π′, z′) = ϕ(u′i, u−i). By Claim 2, π′ij ≥ 1− 3Ω
K
. Thus, u1(π′i, z

′
i) ≥ K(1− 3Ω

K
) = K−3Ω.

If πij < 1− 16Ω
K

, then since zi ∈ [0,Ω],

ui(πi, zi) < K

(
1− 16Ω

K

)
+

3K

4

(
16Ω

K

)
+ Ω = K − 3Ω.

Thus, ui(πi, zi) < ui(π
′
i, z
′
i), contradicting the strategy-proofness of ϕ. So, πij ≥ 1− 16Ω

K
.

Claim 4. Let K > 68Ω. Suppose u ∈ U slin is such that there is a distinct pair i, j ∈ N for
whom

ui(πi, zi) = Kπij + 3K
4
πik + zi

and
uj(πj, zj) = Kπji + 3K

4
πjk + zj,
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where {k} = N \ {i, j}. If (π, z) = ϕ(u), then πij ≥ 1− 68Ω
K

.

Proof of Claim 4. Consider u′j ∈ U slinj such that

u′j(πj, zj) = Kπji −Kπjk + zj

and let (π′, z′) = ϕ(u′j, u−j). By Claim 3, π′ij ≥ 1 − 16Ω
K

. Thus, uj(π′j, z′j) ≥ K(1 − 16Ω
K

) =

K − 16Ω.
If πij < 1− 68Ω

K
, then and zj ∈ [0,Ω],

uj(πj, zj) < K

(
1− 68Ω

K

)
+

3K

4

(
68Ω

K

)
+ Ω = K − 16Ω.

Thus, uj(πj, zj) < uj(π
′
j, z
′
j), contradicting the strategy-proofness of ϕ. So, πij ≥ 1− 68Ω

K
.

Let K > 306Ω. We now complete the proof of Theorem 2 by considering u, u′ ∈ U slin
such that

u1(π1, z1) = Kπ12 + 3K
4
π13 + z1,

u′1(π1, z1) = 3K
4
π12 + Kπ13 + z1,

u2(π2, z2) = Kπ23 + 3K
4
π21 + z2,

u′2(π2, z2) = 3K
4
π23 + Kπ21 + z2,

u3(π3, z3) = Kπ31 + 3K
4
π32 + z3,

and u′3(π3, z3) = 3K
4
π31 + Kπ32 + z3,

Let (π, z) ≡ ϕ(u), (π1, z1) ≡ ϕ(u′1, u−1), (π2, z2) ≡ ϕ(u′2, u−2), and (π3, z3) ≡ ϕ(u′3, u−3). By
Claim 4, π1 puts at least 1− 68Ω

K
on σ13, π2 puts at least 1− 68Ω

K
on σ12, and π3 puts at least

1− 68Ω
K

on σ23.

Since ϕ is strategy-proof,

Kπ12 +
3K

4
π13 + z1 = u1(π1, z1) ≥ u1(π1

1, z
1
1) ≥ 3K

4

(
1− 68Ω

K

)
=

3K

4
− 51Ω

Kπ23 +
3K

4
π21 + z2 = u2(π2, z2) ≥ u2(π2

2, z
2
2) ≥ 3K

4

(
1− 68Ω

K

)
=

3K

4
− 51Ω

Kπ31 +
3K

4
π32 + z3 = u3(π3, z3) ≥ u3(π3

3, z
3
3) ≥ 3K

4

(
1− 68Ω

K

)
=

3K

4
− 51Ω

Since π is symmetric, summing these inequalities,

7K

4
(π12 + π13 + π23) ≥ 9K

4
− 153Ω.
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However, feasibility requires that π12 + π13 + π23 ≤ 1. Therefore,

K ≤ 306Ω,

which is a contradiction.

Proof of Proposition 3. Let ρ be the randomization device that defines ϕ.
For each RL ∈ RL, and each o ∈ O, the procedure begins with all agents and successively

matches one agent at a time to their most preferred partner (possibly themselves) who is yet
to be matched. Therefore, the deterministic matching it produces, given any o ∈ O, is Pareto
efficient at RL. Thus, ϕ, defined at each RL as a ρ-generated lottery over Pareto-efficient
matchings, is ex post Pareto efficient in matching.

Fix RL ∈ RL, i ∈ N, and R̃L
i ∈ RL

i . Let �i and �̃i be the partner rankings of RL
i and

R̃L
i , respectively. Define π = ϕ(RL

i , R
L
−i) and π̃ = ϕ(R̃L

i , R
L
−i). Since we have fixed RL, i,

and R̃L
i arbitrarily, to show ϕ is ex ante individually rational and strategy-proof, it suffices

to show that πi RL
i δ

i
i and πi RL

i π̃i, respectively.
For each o ∈ O, let A(o) and Ã(o) be the sets of all agents who are unmarked when the

procedure first enters the Match Phase under (RL
i , R

L
−i) and (R̃L

i , R
L
−i), respectively. For each

o ∈ O, let B(o) and B̃(o) be the set of all agents who are unmarked just before the procedure
matches i under (RL

i , R
L
−i) and (R̃L

i , R
L
−i), respectively. Let β be the highest-ranked partner

of i in A ∩ Ji according to �i. Define β̃ analogously using Ã and �̃i. For each N ′ ⊆ N and
each o ∈ O, let τ(N ′, o) be the first agent in N ′ according to o.

The following observations follow from the definition of the procedure.

Observation 1. For each pair o, o′ ∈ O, A(o) = A(o′) and Ã(o) = Ã(o′). Henceforth, we
refer to A and Ã without reference to the order.

Observation 2. If i 6∈ A, then πi = δii. If i 6∈ Ã, then π̃i = δii.

Observation 3. If i ∈ A ∩ Ã, then A = Ã.

Observation 4. If i ∈ Ã \ A, then for each j ∈ Ã, i �i j.

Observation 5. If A = Ã, then, for each o ∈ O, B(o) = B̃(o).

Claim 1. If i ∈ A, then β �i i and πiβ > 0. If i ∈ Ã, then π̃iβ̃ > 0.

Proof. By definition of A, i ∈ A implies there is some j ∈ A such that j �i i. Thus, β �i i.
At each o ∈ O that puts i first, i is selected and matched to β in the first step of the Match
Phase. By the full support property of ρ, there is at least one such o ∈ O selected with
probability ρ(o) > 0, so πiβ > 0. By identical reasoning, if i ∈ Ã, then π̃iβ̃ > 0.
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We now show that ϕ is ex ante individually rational. If i 6∈ A, then πi = δii, by Observa-
tion 2. So suppose instead that i ∈ A. By Claim 1, β �i i and πiβ > 0, so we have πi RL

i δ
i
i.

Thus, ϕ is ex ante individual rational.
We now show that ϕ is strategy-proof. We examine each of the four possible cases.

Case i 6∈ A ∪ Ã: By Observation 2, πi = π̃i = δii.
Case i ∈ A\Ã: Since i ∈ A, by Claim 1, β �i i and πiβ > 0. Since i 6∈ Ã, by Observation 2,
π̃i = δii. Thus, πi PL

i π̃i = δii.
Case i ∈ Ã \ A: Since i 6∈ A, by Observation 2, πi = δii. Since i ∈ Ã, by Claim 1, π̃iβ̃ > 0.
By Observation 4, for each j ∈ Ã, in particular for j = β̃ 6= i, i �i j. Thus, for each j ∈ N
such that π̃ij > 0, i �i j and for j = β̃, π̃ij > 0 and i �i j. Thus, δii = πi P

L
i π̃i.

Case i ∈ A ∩ Ã: Let o ∈ O. Recall, B(o) and B̃(o) are the sets of unmarked agents just
before the step in which i is matched, when i reports �i and �̃i, respectively. At �i, let k be
the agent selected at this step using o. By Observations 3 and 5, A = Ã and B(o) = B̃(o).
So k is also selected at this step at �̃i. Let jo ∈ B(o) and j̃o ∈ B(o) be the agents to whom
the procedure matches i, at �i and �̃i, respectively. If k 6= i, then k = jo = j̃o, since k’s
reported preference is fixed. Instead, if k = i, jo is the highest-ranked partner of i in B(o)∩Ji
according to �i, so jo �i j̃o. Since for each o ∈ O, jo �i j̃o, we conclude πi RL

i π̃i.
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